Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bitterer Nektar und Blütenduft garantieren optimale Fortpflanzung

29.08.2008
Experimente mit gentechnisch veränderten Pflanzen offenbaren interessante Zusammenhänge in der Blütenbiochemie

Blütenfarben und -formen sowie Duftsignale locken verschiedene Tiere zum Zwecke der Pollenübertragung auf andere Pflanzen an. Bittere und giftige Bestandteile des Blütennektars sollen dagegen eigentlich Blütenräuber verscheuchen.


Der Kolibri Selasphorus rufus saugt an einer Blüte des Wilden Tabaks (Nicotiana attenuata)
Danny Kessler, MPI chemische Ökologie


Zwei Inhaltsstoffe der Blüte, die die Besuchsfrequenz von Kolibris und Motten optimieren: Nikotin (N) im Nektar, der sich im Blütenboden befindet, und Benzylaceton (BA), das im Bereich der Blütenkrone als Duftstoff abgegeben wird
Danny Kessler, MPI chemische Ökologie

So enthält der Blütennektar des Tabaks neben verschiedenen Zuckern giftiges Nikotin, welches der Abschreckung von Nektarräubern oder Fraßfeinden dient. Wie Wissenschaftler vom Max-Planck-Institut für chemische Ökologie in Jena im Verlauf von Freilandexperimenten mit gentechnisch veränderten Tabakpflanzen nun jedoch zeigen konnten, spielen diese Inhaltsstoffe neben dem Duft auch eine entscheidende Rolle für die Befruchtung und damit die Samenproduktion der Pflanze: In wohldosierter Menge sorgt das Nikotin im Nektar nämlich zusammen mit dem Lockstoff Benzylaceton für eine Optimierung der Besucherfrequenz an Blüten durch Pollen übertragende Kolibris und Schwärmermotten und sichert so die Auskreuzung und Produktion neuer Tabaksamen (SCIENCE, 29. August 2008).

Tiere bringen ihre Keimzellen "persönlich" zueinander - durch Aufsuchen des Sexualpartners, Begattung, Befruchtung, Fortpflanzung. Pflanzen dagegen sind als sesshafte Lebewesen auf die Hilfe Dritter, den Pollinator, angewiesen. Dabei handelt es sich in der Regel um Insekten oder andere Nektar suchende Tiere. Um diese anzulocken, bedienen sich die Pflanzen farblicher und geruchlicher Signale. Giftige und bittere Bestandteile des Nektars sollten dagegen eher der Abschreckung von Fraßfeinden dienen. Wissenschaftler vom Max-Planck-Institut für chemische Ökologie hatten jedoch bereits vor längerer Zeit herausgefunden, dass das im Nektar von wildem Tabak vorhandene Nikotin je nach Konzentration die Bestäubung der Pflanzen durch den Tabakschwärmer Manduca sexta und durch zwei Kolibriarten zu beeinflussen scheint [1].

Um genauen Einblick in die "Blütenbiochemie" und ihre ökologischen Wechselwirkungen mit den mobilen Besuchern zu erhalten, erzeugten die Max-Planck-Forscher vier verschiedene Linien gentechnisch veränderten wilden Tabaks (Nicotiana attenuata): Neben Kontrollpflanzen, die lediglich eine Blindkopie des transgenen DNA-Abschnitts enthielten, wurden Pflanzen kultiviert, die mittels RNA-Interferenz entweder kein Nikotin herstellen konnten oder kein Benzylaceton (ein aus der Kakaobohne bekannter Duftstoff, der dem des Jasmins und der Erdbeere ähnelt). Die vierte Pflanzenlinie konnte weder Nikotin noch Benzylaceton synthetisieren.

Zunächst zeigten die Forscher in einer Reihe von Kontrollexperimenten, dass die gentechnischen Veränderungen per se weder Wachstum, Blüten- und Nektarbildung noch Auskreuzungsfrequenzen der transgenen Pflanzen beeinflussen. Dann starteten sie ihre Versuchsreihen: In den Pflanzen, die kein Nikotin mehr bilden konnten, war das Volumen des Blütennektars nur noch halb so groß wie in den Kontrollpflanzen und in den Pflanzen, die kein Benzylaceton als Lockstoff mehr bilden konnten. "Das heißt, Blumenbesucher müssen grundsätzlich durch den Duftstoff angelockt werden und trinken offenbar umso mehr Nektar, wenn dieser nicht mehr durch Nikotin verbittert ist", erklärt Danny Kessler.

Mithilfe von Videokameras konnten die Forscher das Ergebnis bestätigen: Tatsächlich bekamen die Pflanzen aus den beiden Linien, die keinen Lockstoff mehr produzieren konnten, nur wenig Besuch von Kolibris (z.B. Archilochus alexandri) und Linienschwärmermotten (Hyles lineata). Und wenn die Tiere an Blüten saugten, deren Nektar die natürliche Menge des abstoßenden Nikotins enthielten, verweilten sie nur kurze Zeit dort, während sie gern und lange den nikotinfreien Nektar der entsprechenden transgenen Linien genossen. Dies betraf vor allem die Kolibris. "Allerdings sagen solche Beobachtungen nichts darüber aus, ob sich derlei unterschiedliches Besuchsverhalten auf den Auskreuzungs- und damit Fortpflanzungserfolg der Pflanzen, das heißt ihre Fitness im Darwin'schen Sinne, auswirkt", so Kessler.

Daher führten die Jenaer Forscher zwei weitere Analysen durch, die in dem einen Fall auf die weibliche Fitness, also die Produktionsrate der Samen im Fruchtknoten fokussierten, im anderen auf die männliche Fitness, also den Befruchtungserfolg des an die Blütenbesucher abgegebenen Pollens auf benachbarten Pflanzen. Zur Bestimmung der weiblichen Fitness wurden Blüten an den vier verschiedenen transgenen Pflanzenlinien durch Abtrennen der Staubfäden "entmannt" - ein gängiges Verfahren aus der Pflanzenzüchtung. Auf diese Weise wird die Eigenbefruchtung verhindert und die Forscher können nachfolgend den nur durch Blumenbesucher vermittelten Befruchtungserfolg bestimmen. Es zeigte sich, dass nur die Kontrollpflanzen durch Pollen von sie umgebenden wild wachsenden Tabakpflanzen normal fremdbefruchtet wurden, während die transgenen Pflanzenlinien, die kein Nikotin- und Benzylaceton herstellen konnten, nur weniger als die Hälfte an Samen aufbrachten.

Umgekehrt erfolgte die Bestimmung der männlichen Fitness der vier transgenen Pflanzenlinien, indem die Blüten wild wachsender Pflanzen "entmannt" und nachfolgend der Ursprung des befruchtenden Pollens ihrer Samen mithilfe von DNA-Sonden ermittelt wurde. Dieser Vaterschaftstest lieferte die Information, welche der vier transgenen Linien ihren Pollen am erfolgreichsten an umgebende wilde Pflanzen via Insekt oder Kolibri weitergegeben hatte. Auch hier zeigte sich, dass die Kontrollpflanzen, welche natürliche Mengen an Nikotin und Benzylaceton-Lockstoff produzierten, die potentesten, zeugungsfähigsten Bestäuber gewesen waren; die großen Verlierer (fast fünfmal weniger Samen) waren Pflanzen, die weder Nikotin noch Benzylaceton bilden konnten.

"Interessanterweise aber verschob sich innerhalb der Vegetationsperiode der anfängliche männliche "Befruchtungserfolg" von den Pflanzen, die keinen Lockstoff produzieren konnten, hin zu jenen, die kein Nikotin herstellen konnten", sagt Kessler. Mit anderen Worten: Das Nikotin im Nektar beeinflusste mit der Zeit immer weniger die durch Bestäuber vermittelte "erfolgreiche Paarung" von Tabakpflanzen, immer wichtiger aber wurde der Lockstoff. Videoaufnahmen bestätigten: Zuerst im Jahr kommen die Kolibris, bei denen das Nikotin im Nektar bewirkt, dass sie zwar weniger von dem bitteren Saft trinken, es aber immer wieder an verschiedenen Blüten versuchen und so unfreiwillig die Pollenübertragung steigern. Später kommen die Motten, die dem Lockstoff "verfallen" und immer wieder die Blüten besuchen, der bittere Nektar stört sie anscheinend weniger.

Der Leiter der Studie, Ian Baldwin, folgert aus den Experimenten, dass ähnlich wie Limonadefabrikanten, die ihr Rezept nicht preisgeben und immer nur wenig verändern, um den Verkauf zu sichern und dem Diktat des Marktes zu gehorchen, auch Pflanzen das Aroma und den Verbrauch ihres Nektars genau steuern, um dem Diktat der Darwin'schen Fitness zu gehorchen, also ihre Art durch optimale Samenproduktion zu erhalten. Baldwin weiter: "Nectar, which was thought to be nature's soft drink, may not be so soft after all."

Die Forscher beobachteten auch wieder, dass das Nikotin im Nektar erfolgreich blütenfressende und damit der Fortpflanzung abträgliche Insekten verjagt. Mit ihren duftenden Lockstoffen stehen Pflanzen nämlich ständig in dem Konflikt, nicht nur Bestäuber, sondern auch Fraßfeinde anzulocken, die es gilt, loszuwerden. Das Nervengift Nikotin ist hier ebenfalls ein hilfreiches Agens.

Die Experimente mit blühenden transgenen Tabakpflanzen wurden auf der Feldstation des Instituts (Brigham Young University's Lytle Ranch Preserve), Utah, USA, durchgeführt und waren von der dort zuständigen Behörde (USDA-APHIS) genehmigt und überwacht worden.

Stichwort chemische Ökologie:
Die chemische Ökologie ist eine junge Disziplin der Biologie. Wechselwirkungen, schädliche wie nützliche, werden durch chemische Signale zwischen Lebewesen vermittelt. Das Max-Planck-Institut für chemische Ökologie erforscht die Struktur und Funktion der Moleküle, die das Wechselspiel zwischen Pflanzen, Insekten und Mikroben steuern, und erzielt Erkenntnisse über Wachstum, Entwicklung, Verhalten und Co-Evolution pflanzlicher und tierischer Arten. Ergebnisse dieser biologischen Grundlagenforschung werden für Naturstoffanalysen, moderne Umweltforschung und zeitgemäße Agrikulturverfahren genutzt.
Originalveröffentlichung:
Danny Kessler, Klaus Gase, Ian T. Baldwin: Field experiments with transformed plants reveal the sense of floral scents.

SCIENCE, 29. August 2008

Weitere Literatur:
[1] Kessler D; Baldwin IT (2007): Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. The Plant Journal 49, 840-854
Weitere Informationen:
Prof. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Jena,
Tel. +49 (0)175 1804226; +49 (0)3641 57-1100, -1101, -1000; baldwin@ice.mpg.de
Bildmaterial:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Jena,
Tel.: +49 (0)3641 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften