Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bisher unbekannte Proteine steuern die selektive Nährstoffaufnahme in Pflanzenwurzeln

20.05.2011
Eine internationale Forschergruppe unter Beteiligung von Molekularbiologen der Universität Tübingen entschlüsselt einen neuen Weg bei der Entstehung der Struktur von Zellmembranen.

Alle mehrzelligen Lebewesen, ob Tier oder Pflanze, bilden spezielle Zellschichten aus, die eine Barriere zur Umgebung bilden oder den Kontakt zur Umgebung regulieren. Bei Tieren spricht man von einem Deck- oder Drüsengewebe, in der Fachsprache Epithel.

Dessen Zellen sind polarisiert, es gibt einen Unterschied zwischen innen und außen. Eine in gewissem Sinne ähnliche Funktion wie dieses polarisierte Epithel bei den Tieren spielt die Wurzelendodermis bei den Pflanzen. Wie sich solche Barrieren zum Beispiel in der schützenden Zellhülle, der Plasmamembran, bilden, ist molekularbiologisch noch weitgehend ungeklärt.

Eine internationale Forschergruppe, an der auch Wissenschaftler des Zentrums für Molekularbiologie der Pflanzen der Universität Tübingen beteiligt sind, hat jetzt erstmals einen molekularen Faktor identifiziert, der bei Pflanzen die Bildung einer Diffusionsbarriere in Plasmamembranen steuert. Die Arbeit erscheint in der aktuellen Ausgabe der Fachzeitschrift „Nature“.

Epithel- und Endodermis-Zellen spielen die Rolle einer Diffusionsbarriere; sie verbinden zugleich die Zellen und schützen sie vor dem Raum außerhalb der Zelle. Die Zellen der Wurzelendodermis bei Pflanzen umschließen den zentralen Strang der Wurzel, in dem die Nährstoffe und das Wasser fließen. Die Endodermis sorgt dafür, dass dort Wasser hineindiffundiert und den für die Versorgung nötigen Wasserdruck erzeugt. Sie spielt eine wichtige Rolle für die Nahrungsversorgung der Pflanze und ihre Stressresistenz und ähnelt in dieser Funktion stark einem polarisierten Epithel.

Zu den Forschern um den leitenden Autor dieser Studie, Niko Geldner, von der Abteilung für Pflanzenmolekularbiologie der Universität Lausanne, gehört auch Dr. York-Dieter Stierhof, der am Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen vor allem für unter-schiedliche Verfahren der Mikroskopie zuständig ist. Professor Geldner selbst hat 2003 am ZMBP promoviert.

Die Wissenschaftler haben sich, unter anderem mit verschiedenen Verfahren der optischen und der Elektronenmikroskopie, eine Familie von Pflanzenproteinen genauer angesehen, deren Funktion bisher unbekannt war. Sie nennen diese Proteine CASPs, denn die Proteine markieren Bereiche einer Membran, an der sich sogenannte Casparische Streifen bilden. Diese Streifen in den Zellwän-den der Wurzelendodermis sind grundsätzlich seit langem bekannt; sie wurden benannt nach dem 1887 gestorbenen deutschen Botaniker Robert Caspary. Dort, wo sich diese Streifen bilden, können Mineralstoffe und Wasser nicht mehr ohne weiteres zwischen den Zellwänden hindurch oder durch die Zellwände in den Kernbereich der Wurzel vordringen. Offen bleibt nur noch der Weg durch spe-zielle Zellen der Endodermis. So wird die Endodermis zu einem Filter, der steuert, welche Nährstoffe der Pflanze zugeführt werden.

Die Forscher haben die Casparischen Streifen in der Wurzelendodermis der Ackerschmalwand (Arabidopsis thaliana) untersucht. Sie fanden dort, stark lokalisiert in den Regionen der Caspari-schen Streifen, fünf Proteine, die bei Arabidopsis zu einer „uncharakterisierten Proteinfamilie“ UPF0497 mit insgesamt 38 Familienmitgliedern gehören. Diese CASPs (Casparian Strip membrane Domain Proteins) stehen in engem Zusammenhang mit der Bildung und Formierung von Caspari-schen Streifen. Mutierte Formen der CASPs führten im Experiment zu einer Desorganisation der Streifen – eine Beobachtung, die belegt, dass die CASPs eine wichtige Rolle bei der Bildung der Streifen haben. Das Protein CASP1 zeigte mehrere Eigenschaften, die für einen Bindungskomplex in Pflanzen entscheidend sind. So kann es zum Beispiel Komplexe mit anderen CASPs bilden und wie ein großes Polymer sedimentieren.

Das Fazit der Forscher: CASPs sind die ersten molekularen Faktoren, die nachgewiesenermaßen bei Pflanzen eine Plasmamembran und extrazelluläre Diffusionsschranke bilden. Sie stellen einen bisher unbekannten Weg der Bildung einer Epithel-Barriere bei höheren Organismen (Eukaryoten) dar.

Die Studie: Daniele Roppolo, Bert De Rybel, Valérie Dénervaud Tendon, Alexandre Pfister, Julien Alassimone, Joop E. M. Vermeer, Misako Yamazaki, York-Dieter Stierhof, Tom Beeckman and Niko Geldner: A novel protein family mediates Casparian strip formation in the endodermis. Nature, 19. Mai 2011, DOI: 10.1038/nature10070.

Kontakt:
Dr. York-Dieter Stierhof
Universität Tübingen
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Auf der Morgenstelle 5
72076 Tübingen
Tel: 07071-2976662
Fax: 07071-293287
e-mail: york.stierhof@zmbp.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/ZMBP/centfac/micro/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie