Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysiker messen erstmals, was sich bewegt, wenn rote Blutkörperchen "zappeln"

19.01.2016

Wie sich rote Blutkörperchen bewegen, haben Wissenschaftler jetzt erstmals mit physikalischen Methoden nachgewiesen: Schnelle Moleküle in der Umgebung bringen die Zellmembran der Blutkörperchen zum "Zappeln". Wenn sie ausreichend Reaktionszeit haben, sind Blutkörperchen jedoch auch selbst aktiv. Erschienen ist die Studie in der Fachzeitschrift Nature Physics (Advance Online Publication).

Wissenschaftler haben erstmals mit physikalischen Methoden nachgewiesen, wie sich rote Blutkörperchen bewegen. Ob die Zellen von äußeren Kräften bewegt werden oder aktiv "zappeln", darüber hatte es unter Forschern regelrechte Kämpfe gegeben. Ein internationales Team von Biophysikern aus Münster, Paris und Jülich hat nun bewiesen, dass beides stimmt.


Drei winzige Kugeln halten die roten Blutkörperchen fest, während mit Hilfe einer vierten Kugel die Bewegungen der Zellmembran (Ausschnitt unten) gemessen werden.

Copyright: Forschungszentrum Jülich

Sie haben physikalische Grundsätze und biologische Realität miteinander verknüpft und erkannt: Schnelle Moleküle in der Umgebung bringen die Zellmembran der Blutkörperchen zum Zappeln, aber wenn sie genug Reaktionszeit haben, sind Blutkörperchen auch selbst aktiv.

Durch einen Vergleich von innovativen Experimenten mit neuen theoretischen Modellen kann dieser Prozess genau bestimmt werden. Erschienen ist die Studie in der Fachzeitschrift Nature Physics, einem der weltweit führenden Physik-Journale.

Rote Blutkörperchen (Erythrozyten) dienen dem Transport von Sauerstoff im Blut von Wirbeltieren. Den Grund für ihr ständiges Zappeln haben Physiker bislang einzig in thermischen, also äußeren Kräften gesehen. Biologische Überlegungen lassen dagegen vermuten: Auch innere, durch Proteine verursachte Kräfte sind dafür verantwortlich, dass sich die Zellmembran der Blutkörperchen verformt.

"Unsere Ausgangsfrage lautete deshalb: Da Blutkörperchen lebendige Zellen sind, warum sollten nicht auch interne Kräfte in der Zelle auf die Membran wirken?", sagt Dr. Timo Betz von der Westfälischen Wilhelms-Universität Münster (WWU). "Für Biologen ist das eigentlich klar, aber diese Kräfte waren eben nie Teil einer physikalischen Gleichung."

Die Forscher haben sogar schon eine Vermutung, welche Kräfte innerhalb der Zelle die Zellmembran verformen. "In der Membran könnten Transportproteine solche Kräfte dadurch erzeugen, dass sie Ionen von einer Seite der Membran auf die andere befördern", sagt Prof. Dr. Gerhard Gompper, Direktor des Jülicher "Institute of Complex Systems".

Timo Betz forscht seit dem Jahr 2015 als Biophysiker an der WWU und ist Leiter der Forschungsgruppe "Mechanics of cellular systems" (Mechanik von Zellsystemen) des Exzellenzclusters "Cells in Motion". Die Forschung zur Aktivität roter Blutkörperchen wurde als internationale Zusammenarbeit zwischen dem renommierten Pariser Institut Curie und dem "Institute of Complex Systems" und "Institute for Advanced Simulation" in Jülich begonnen und jetzt in Münster, Paris und Jülich abgeschlossen.

"Dabei war das Zusammenwirken der physikalischen Theorien von Hervé Turlier, der Computersimulationen von Dmitry Fedosov und Thorsten Auth sowie meiner experimentellen Resultate der Schlüssel zum Erfolg", erklärt Timo Betz. Die Kombination von Experiment, Theorie und Computersimulationen sind für neue Einsichten essenziell, weiß auch Gerhard Gompper: "Hochmoderne Simulationen sind heute dazu in der Lage, chemische und biologische Prozesse zu quantifizieren, die sich einer direkten experimentellen Beobachtung entziehen."

Mehr Verständnis für die Zellmechanik

Die Grundlagenforscher möchten mehr über die Mechanik von Blutkörperchen herausfinden und im Detail verstehen, welche Kräfte Zellen bewegen und formen. Gerade im Fall von roten Blutkörperchen ist es wichtig, über ihre Beschaffenheit und inneren Kräfte Bescheid zu wissen. Sie sind nämlich ungewöhnlich weich, elastisch und verformen sich, um auch durch die teilweise winzigen Blutgefäße unseres Körpers hindurchzupassen.

Eben weil Blutkörperchen im Normalfall so weich sind, konnten Physiker in vorherigen Studien an ihrer äußeren Membran große thermische Fluktuationen messen. Diese natürlichen Bewegungen von Molekülen werden durch die Umgebungstemperatur bestimmt. Das heißt: Die Zellmembran der Blutkörperchen bewegt sich, weil Moleküle in der Umgebung sie anstoßen. Unter dem Mikroskop sieht das aus, als würden die Blutkörperchen zappeln.

Dies erklärt zwar, warum sich Blutkörperchen bewegen, fragt aber nicht nach möglichen inneren Kräften, die dazu beitragen. Das Forscherteam um Timo Betz hat deshalb die Fluktuationen von Blutkörperchen mit einer neuen Methode genau untersucht: Mit einer sogenannten optischen Pinzette, einem konzentrierten Laserstrahl, haben die Forscher Blutkörperchen in einer Petrischale in die Länge gezogen und analysiert, wie sich die Zelle verhält.

Das Ergebnis: Hatten die Blutkörperchen genügend Reaktionszeit, wurden sie selbst aktiv und konnten der Kraft der optischen Pinzette entgegenwirken. Blieb ihnen diese Zeit nicht, waren sie ihrer Umgebung ausgeliefert, und es wurden nur temperaturbedingte Kräfte gemessen.

"Wir können durch den Vergleich beider Messungen genau bestimmen, wie schnell die Zellen selbst aktiv werden und welche Kraft sie erzeugen, um sich zu verformen", erklärt Betz. "Jetzt sind die Biologen dran: Wir Physiker haben nämlich nur eine grobe Idee, welche Proteine der Motor für diese Bewegung sein könnten. Dafür können wir genau vorhersagen, wie schnell und stark sie sind."

Originalpublikation:

Turlier H., Fedosov D. A., Audoly B., Auth T., Gov N. S., Sykes C., Joanny J. F., Gompper G., Betz T. (2016): Red blood cell mechanics violates the fluctuation dissipation theorem. Nature Phys: PUBLISHED ONLINE: 18 JANUARY 2016 | DOI: 10.1038/NPHYS3621

Gemeinsame Pressemitteilung der Westfälischen Wilhelms-Universität Münster und des Forschungszentrums Jülich

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Sibylle Schikora, Pressereferentin/Forschungsredakteurin
Exzellenzcluster "Cells in Motion"
Westfälische Wilhelms-Universität Münster
Tel.: +49 251 83-49310
sibylle.schikora@uni-muenster.de

Weitere Informationen:

http://www.uni-muenster.de/Cells-in-Motion/de/people/all/betz-t.php CiM-Gruppenleiter Dr. Timo Betz
http://www.fz-juelich.de/ics/ics-2/DE/Home/home_node.html Forschungszentrum Jülich, Theorie der Weichen Materie und Biophysik
http://www.nature.com/nphys/index.html Fachjournal Nature Physics

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie