Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysiker der Freien Universität untersuchen Biomembranen mit neuartigem hochauflösenden Infrarot-Mikroskop

16.12.2013
Biophysiker der Freien Universität haben in Kooperation mit spanischen Wissenschaftlern einen Weg gefunden, um Proteine unter dem Mikroskop ohne Anfärbung sichtbar zu machen.

Die Wissenschaftler um Professor Joachim Heberle und des nanoGUNE-Institut in San Sebastián setzten ein Infrarot-Mikroskop ein, um die winzigen Protein-Komplexe zu untersuchen - mit herkömmlichen Lichtmikroskopen können sie nicht abgebildet werden.

In einer soeben veröffentlichten Arbeit in der renommierten Fachzeitschrift Nature Communications berichten die Forscher über Anwendungen an Zellmembranen und faserigen Proteinstrukturen - sogenannten Amyloiden -, die bei neurologischen Erkrankungen wie Parkinson und Alzheimer eine wesentliche Rolle spielen. Das Besondere an dem Mikroskop ist die Tatsache, dass damit nicht nur hochaufgelöste Bilder aufgenommen werden können, sondern die Strukturen auch auf ihre chemische Zusammensetzung hin untersucht.

Neben der biophysikalischen Grundlagenforschung an Biomembranen kann dieses Mikroskop in der biomedizinischen Analytik eingesetzt werden, um sehr geringe Mengen an biologischem Material oder Verunreinigungen, Viren oder Pathogene markierungsfrei zu identifizieren. Proteine sind Nanomaschinen, die den Zellen in unserem Körper Struktur und Funktion verleihen.

Mikroskopie und Mikrobiologie gehen seit den Arbeiten des niederländischen Naturforschers Antonie van Leeuwenhoek (1632-1723) eine heilvolle Allianz ein: Die im 19. Jahrhundert vom Mathematiker und Physiker Ernst Abbé in Jena definierte Auflösungsgrenze erlaubt allerdings nur solche Strukturen im Mikroskop zu sehen, die nicht kleiner sind als die Hälfte der Wellenlänge des sichtbaren Lichtes, also im Bereich von 0,2-0,3 Mikrometern liegen.

Die Strukturen der belebten Materie, wie Bakterien, Viren, Proteine, sind allerdings noch kleiner, und Wissenschaftler haben mittlerweile Tricks entwickelt, um noch tiefer in diesen Nanokosmos vorzudringen. Dies kann durch Verkürzung der Wellenlänge erreicht werden, wie es bei Röntgen- und Elektronenstrahlung ausgenutzt wird. Allerdings ist diese Strahlung zumeist schädlich für die belebte Materie.

Die Lebenswissenschaften erfahren gegenwärtig eine Revolution in der hochauflösenden Lichtmikroskopie: Hier werden zumeist Farbstoffe verwendet, die nach Beleuchtung mit sichtbarem Licht fluoreszieren. Biologische Zellen werden damit angefärbt, und der fluoreszierende Fleck eines einzelnen Farbstoffmoleküls lässt sich mit einem modernen Mikroskop sehr präzise lokalisieren.

Angetrieben durch neue Erkenntnisse in den physikalischen Wissenschaften wurden auf dieser Basis sog. Superauflösungsmikroskope entwickelt, mit denen kleinste Strukturen selbst in lebenden Zellen sichtbar gemacht werden können. Der Weltrekord liegt derzeit bei einer Auflösung von wenigen Nanometern (ein Nanometer entspricht einem Milliardstel Meter).

Eine komplementäre Methode entwickelte ein Forscherteam um Professor Rainer Hillenbrand aus San Sebastián, in dem anstatt der Fluoreszenzemission die Absorption von Wärmestrahlung für den Bildkontrast ausgenutzt wird. Dieses Mikroskop (Nano-FTIR) erreicht seine Hochauflösung, in dem ein infraroter Laserstrahl auf das Ende einer feinen Nadelspitze gerichtet wird, die nur wenige Nanometer dick ist. Die gestreute Strahlung wird durch die sich in unmittelbarer Nähe befindlichen biologischen Probe absorbiert, und das Absorptionsspektrum wird durch einen entsprechenden Detektor registriert. Wenn die Spitze nun punktweise die biologische Probe abtastet, entsteht ein chemisches Abbild der Oberfläche.

Mit einer Auflösung von 30 Nanometern kann sich das Nano-FTIR zwar noch nicht ganz mit der moderner Fluoreszenzmikroskope messen, aber es besitzt gegenüber Letzteren zwei entscheidende Vorteile: Es funktioniert markierungsfrei, das heißt, die biologische Probe muss vorher nicht aufwendig angefärbt werden. Darüber hinaus liefert das aufgenommene Infrarot-Spektrum einen Fingerabdruck des untersuchten Moleküls. Man kann damit also nicht nur eine Struktur abbilden, sondern diese auch chemisch analysieren und einer Substanz zuordnen.

Für Messungen an Zellmembranen forschte Elmar Hubrich, der seine Dissertation am Fachbereich Physik der Freien Universität unter Betreuung von Prof. Heberle anfertigt, in San Sebastián. Sehr schnell konnte in den mikroskopischen Aufnahmen zwischen Lipidschicht und Membranprotein unterschieden und das Auflösungsvermögen des Mikroskops bestimmt werden. Des Weiteren wurden Amyloid-Fibrillen untersucht - unlösliche Proteinaggregate, die bei Krankheiten wie Alzheimer und Morbus Parkinson auftreten.

Verunreinigungen, die in solchen biologischen Proben zu ernsthaften Problemen führen, konnten mit der Nano-FTIR-Mikroskopie nachgewiesen werden. Anhand einer viralen Verunreinigung konnte " die Nadel im Heuhaufen" gefunden werden. Für die Zukunft soll die Auflösung der Technik weiter verbessert werden mit dem Ziel, einzelne Proteine, ihre Eigenschaften und ihre Strukturvariationen zu untersuchen. Damit ist eine neue Ära der Biospektroskopie eingeläutet worden. Joachim Heberle möchte mit dieser Technik in Zukunft die Eigenschaften und Funktionen einzelner Membranproteine untersuchen. Es sind Membranproteine, die von mehr als 60 Prozent aller auf dem Markt befindlicher Medikamente angesteuert werden, doch das molekulare Verständnis dieser wichtigen Proteinklasse ist noch sehr dürftig.

Für solche technischen Fortschritte ist es unerlässlich, dass Naturwissenschaftler über klassische Fächergrenzen hinweg zusammenarbeiten. Solche Zusammenarbeiten wurden und werden durch unterschiedliche Förderorganisationen finanziell unterstützt. Ein Teil der gegenwärtigen Arbeit wurde durch das Bundesministerium für Bildung und Forschung gefördert. Die Forschung von Professor Heberle eingebettet in die Focus Area NanoScale der Freien Universität Berlin. Nanoscale ist eine von fünf sogenannten Focus Areas, die aufgrund des Erfolgs in der Exzellenzinitiative an der Freien Universität gegründet wurden. Innerhalb von NanoScale wird die Zusammenarbeit von Physikern, Chemikern und Biologen unterstützt, die an der Struktur und den Eigenschaften von neuen Materialien auf der Ebene von Nanometern forschen.

Literatur
Iban Amenabar, Simon Poly, Wiwat Nuansing, Elmar H. Hubrich, Alexander A. Govyadinov, Florian Huth, Roman Krutokhvostov, Lianbing Zhang, Mato Knez, Joachim Heberle, Alexander M. Bittner & Rainer Hillenbrand (2013)
Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy
Nature Communications 4, Artikelnummer: 2890 (open access)
Fachartikelnummer DOI: 10.1038/ncomms3890
Weitere Informationen
Prof. Dr. Joachim Heberle, Institut für Physik der Freien Universität Berlin, Tel. 030 / 838-53337, E-Mail: joachim.heberle@fu-berlin.de

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de
http://www.fu-berlin.de/sites/inu/research/focus-areas/index.html
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-heberle/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie