Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysiker enthüllen Proteinfaltungsdynamik - Echtzeitmessung von einzelnen Molekülen

19.01.2010
Damit Eiweiße in unserem Körper ihren Dienst tun können, müssen sie sich zu einer genau definierten, dreidimensionalen Struktur zusammenfalten.

Funktioniert diese Faltung nicht, kann dies schwere Erkrankungen zur Folge haben. Wie die Proteine in ihre dreidimensionale Form gelangen ist eine der wichtigsten Fragen der Biowissenschaften und der Medizin. Viele Details dieses Prozesses sind jedoch noch ungeklärt.

In der aktuellen Ausgabe von PNAS beschreiben Biophysiker der Technischen Universität München (TUM) eine neue Methode, mit der sie die Proteinfaltung am Beispiel eines Reißverschluss-ähnlichen Eiweißes in bisher nie erreichtem Detailgrad beschreiben können.

Fehlfunktionen in der Proteinfaltung spielen eine entscheidende Rolle bei vielen schweren Krankheiten, darunter Diabetes, Krebs, Mukoviszidose, Prionenerkrankungen und Alzheimer. Ein besseres Verständnis des Faltungsprozesses ist wichtig, um die Kette der Ereignisse von der DNA-Kodierung bis zur biologischen Funktion zu verstehen. Darauf aufbauend könnten dann gezielt wirksame Medikamente entwickelt werden.

Viele vorangegangene Studien - einschließlich Experimenten der selben Arbeitsgruppe mit Rasterkraftmikroskopie - haben versucht, die Energieschwellen zu charakterisieren, die zwischen dem ungefaltetem und gefaltetem Zustand eines Proteins bestehen. Detaillierte Beobachtungen des sehr schnellen Übergangs von einem Zustand in den anderen waren aber bisher kaum möglich. Die aktuellen Ergebnisse öffnen nun die Tür zu höher auflösenden, direkten Messungen.

Das publizierte Experiment ist das neueste in einer langen Serie von biophysikalischen Experimenten mit einzelnen Molekülen die von Professor Matthias Rief und seinen Kollegen im Physik-Department der TUM durchgeführt wurden. Die Ko-Autoren Christof Gebhardt und Thomas Bornschlögl sind Mitarbeiter in Riefs Labor; Gebhardt ist außerdem Mitarbeiter im Exzellenzcluster Munich Center for Integrated Protein Science.

Als Modell für die Echtzeitstudie der Proteinfaltung wählten die TUM Wissenschaftler einen aus Hefe isolierten so genannten Leucin-Zipper. Er hat eine - für ein Protein - relativ einfache Struktur und einen Faltungsvorgang ähnlich dem eines Reißverschlusses. "Man stelle sich zwei parallele Ketten von Aminosäuren vor, unten zusammengeschlossen, oben offen," erläutert Matthias Rief. "Wie bei einem Reißverschluss lagern sich dann die beiden offenen Enden zusammen."

Die Forscher erweiterten diese Struktur so dass sie unabhängige Messungen am oberen, unteren und mittleren Teil des Reißverschlusses machen konnten. Die freien Enden am oberen Teil hielten sie mit Griffen aus doppelsträngiger DNA fest. Die DNA-Griffe wiederum waren an kleine Perlen gebunden, die die Forscher direkt mit einer "optischen Pinzette" manipulieren konnten. Dieses Werkzeug basiert auf der Fähigkeit eines Laserstrahls mit einem speziellen Profil, Objekte im Nanobereich festhalten zu können. Ein Ende des Proteinmoleküls wurde so fixiert. Das andere stand zwar unter Spannung, hatte aber so viel Bewegungsfreiheit, dass die Faltungsdynamik direkt und in Echtzeit gemessen werden konnte. Dieser Aufbau ermöglichte Messungen mit hoher Auflösung, in der Distanz sowie in der Zeit. "Wir können tausende von Zwischenstufen vermessen und erstmals nicht nur Anfangs- und Endzustand anschauen sondern auch die Berge dazwischen," fasst Rief die Ergebnisse zusammen.

Original-Publikation:

Full distance resolved folding energy landscape of one single protein molecule,
J. Christof M. Gebhardt, Thomas Bornschlögl, and Matthias Rief,
PNAS Early Edition for the week of Jan. 18, 2010.
(Nach Veröffentlichung einsehbar unter: http://www.pnas.org/cgi/doi/10.1073/pnas.0909854107)

Kontakt:

Prof. Matthias Rief
Lehrstuhl für Experimentalphysik
Technische Universität München (TUM)
James-Franck-Str. 1, D 85748 Garching
Tel: +49 89 289 12471 - Fax: +49 89 289 12523
E-mail: mrief@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://www.pnas.org/cgi/doi/10.1073/pnas.0909854107

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie