Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysiker enthüllen Proteinfaltungsdynamik - Echtzeitmessung von einzelnen Molekülen

19.01.2010
Damit Eiweiße in unserem Körper ihren Dienst tun können, müssen sie sich zu einer genau definierten, dreidimensionalen Struktur zusammenfalten.

Funktioniert diese Faltung nicht, kann dies schwere Erkrankungen zur Folge haben. Wie die Proteine in ihre dreidimensionale Form gelangen ist eine der wichtigsten Fragen der Biowissenschaften und der Medizin. Viele Details dieses Prozesses sind jedoch noch ungeklärt.

In der aktuellen Ausgabe von PNAS beschreiben Biophysiker der Technischen Universität München (TUM) eine neue Methode, mit der sie die Proteinfaltung am Beispiel eines Reißverschluss-ähnlichen Eiweißes in bisher nie erreichtem Detailgrad beschreiben können.

Fehlfunktionen in der Proteinfaltung spielen eine entscheidende Rolle bei vielen schweren Krankheiten, darunter Diabetes, Krebs, Mukoviszidose, Prionenerkrankungen und Alzheimer. Ein besseres Verständnis des Faltungsprozesses ist wichtig, um die Kette der Ereignisse von der DNA-Kodierung bis zur biologischen Funktion zu verstehen. Darauf aufbauend könnten dann gezielt wirksame Medikamente entwickelt werden.

Viele vorangegangene Studien - einschließlich Experimenten der selben Arbeitsgruppe mit Rasterkraftmikroskopie - haben versucht, die Energieschwellen zu charakterisieren, die zwischen dem ungefaltetem und gefaltetem Zustand eines Proteins bestehen. Detaillierte Beobachtungen des sehr schnellen Übergangs von einem Zustand in den anderen waren aber bisher kaum möglich. Die aktuellen Ergebnisse öffnen nun die Tür zu höher auflösenden, direkten Messungen.

Das publizierte Experiment ist das neueste in einer langen Serie von biophysikalischen Experimenten mit einzelnen Molekülen die von Professor Matthias Rief und seinen Kollegen im Physik-Department der TUM durchgeführt wurden. Die Ko-Autoren Christof Gebhardt und Thomas Bornschlögl sind Mitarbeiter in Riefs Labor; Gebhardt ist außerdem Mitarbeiter im Exzellenzcluster Munich Center for Integrated Protein Science.

Als Modell für die Echtzeitstudie der Proteinfaltung wählten die TUM Wissenschaftler einen aus Hefe isolierten so genannten Leucin-Zipper. Er hat eine - für ein Protein - relativ einfache Struktur und einen Faltungsvorgang ähnlich dem eines Reißverschlusses. "Man stelle sich zwei parallele Ketten von Aminosäuren vor, unten zusammengeschlossen, oben offen," erläutert Matthias Rief. "Wie bei einem Reißverschluss lagern sich dann die beiden offenen Enden zusammen."

Die Forscher erweiterten diese Struktur so dass sie unabhängige Messungen am oberen, unteren und mittleren Teil des Reißverschlusses machen konnten. Die freien Enden am oberen Teil hielten sie mit Griffen aus doppelsträngiger DNA fest. Die DNA-Griffe wiederum waren an kleine Perlen gebunden, die die Forscher direkt mit einer "optischen Pinzette" manipulieren konnten. Dieses Werkzeug basiert auf der Fähigkeit eines Laserstrahls mit einem speziellen Profil, Objekte im Nanobereich festhalten zu können. Ein Ende des Proteinmoleküls wurde so fixiert. Das andere stand zwar unter Spannung, hatte aber so viel Bewegungsfreiheit, dass die Faltungsdynamik direkt und in Echtzeit gemessen werden konnte. Dieser Aufbau ermöglichte Messungen mit hoher Auflösung, in der Distanz sowie in der Zeit. "Wir können tausende von Zwischenstufen vermessen und erstmals nicht nur Anfangs- und Endzustand anschauen sondern auch die Berge dazwischen," fasst Rief die Ergebnisse zusammen.

Original-Publikation:

Full distance resolved folding energy landscape of one single protein molecule,
J. Christof M. Gebhardt, Thomas Bornschlögl, and Matthias Rief,
PNAS Early Edition for the week of Jan. 18, 2010.
(Nach Veröffentlichung einsehbar unter: http://www.pnas.org/cgi/doi/10.1073/pnas.0909854107)

Kontakt:

Prof. Matthias Rief
Lehrstuhl für Experimentalphysik
Technische Universität München (TUM)
James-Franck-Str. 1, D 85748 Garching
Tel: +49 89 289 12471 - Fax: +49 89 289 12523
E-mail: mrief@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome
http://www.pnas.org/cgi/doi/10.1073/pnas.0909854107

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie