Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik: Stabile Grenzen in der Natur

22.01.2013
„Ein bißchen schwanger gibt es nicht.“ Der Spruch macht deutlich, dass die Natur oft eindeutige Entscheidungen trifft. Wie ihr das gelingt, haben LMU-Wissenschaftler anhand eines theoretischen Modells berechnet.
Ein Beispiel für solche Ja-Nein-Regeln ist die Entwicklung eines Embryos. Aus einem homogenen Zellhaufen differenzieren sich die Zellen zu verschiedenen Gewebearten. Die Grenzen zwischen zwei Zellgruppen verlaufen dabei stets definiert und fast unabhängig von Störfaktoren. Physiker um den NIM-Wissenschaftler Professor Erwin Frey (LMU) sind nun der Frage nachgegangen, wie solche Grenzen generell besonders scharf und zugleich unempfindlich gegen Störungen sein können.

Klare Grenzen setzen

Im Fall der Embryoentwicklung der Fruchtfliege Drosophila kommt das Signal zur Zelldifferenzierung von der Mutter. Sie gibt eine Substanz ab, die durch das Embryogewebe diffundiert. Dabei sinkt die Konzentration abhängig von der Entfernung. Eine solche Konzentrationskurve kann jedoch keine eindeutige Ja-Nein-Aussage vermitteln. Dazu muss das Signal der Mutter über zwei „nicht-linearen Zwischenschritte“ moduliert werden.
An die Signalsubstanz ist ein Protein gekoppelt, dessen Konzentration entscheidet, welche Zellen sich zum Kopf und welche zum Rumpf der Fliege entwickeln. Eine eindeutige Grenze entsteht, wenn sich die Konzentration des Proteins sehr schnell in einem sehr schmalen, definierten Bereich des Zellhaufens ändert. Ein Schritt dorthin ist bereits bekannt: Wenn das Protein eine bestimmte Konzentration erreicht hat, beginnt es seine eigene Synthese selber zu verstärken. Doch laut den Münchner Physikern reicht diese eine Modulation für eine klare Grenze nicht aus. „Wir konnten in einem allgemeinen Modell zeigen, dass dazu eine zusätzliche, nichtlineare Vorstufe notwendig ist“, so Steffen Rulands, der als Doktorand an dem Projekt arbeitet.

Umgang mit Störfaktoren

Zudem untersuchten die Wissenschaftler, wie das System Störfaktoren ausschaltet und so die Grenzen stets an der gleichen Position im Gewebe halten kann.

Äußere Faktoren wie Temperaturschwankungen können die Grenze zwischen zwei Zelltypen räumlich verschieben. Hinzu kommen innere Störungen, das sogenannte „Rauschen“: In einer Zelle befinden sich aufgrund ihrer geringen Größe verhältnismäßig wenig Proteine. Dadurch hat das Verhalten jedes einzelnen deutliche Auswirkungen auf das Gesamtsystem.

Die Berechnungen der Münchner Wissenschaftler ergaben, dass sich der Organismus entscheiden muss, ob er innere oder äußere Störungen verhindert. Die jeweils anderen Störungen muss er mit möglichst geringem Energieverlust eindämmen oder hinnehmen. Gegen das Rauschen könnte er beispielsweise die Gesamtproteinzahl erhöhen, gegen Außenfaktoren wie Temperaturschwankungen eine Isolierschicht entwickeln.

Die neuen Erkenntnisse zum Prinzip der stabilen natürlichen Grenzen könnten in Zukunft auch Wissenschaftlern anderer Disziplinen bei ihrer Forschung weiterhelfen. Beispiele wären die Einstellung biochemischer Reaktionen in der Biotechnologie, Prozesse, die die Zellteilung vorbereiten, oder Grenzen in der Ausbreitung verschiedener Tierarten. (NIM)

Publikation:
Stability of localized wave fronts in bistable systems. S. Rulands, B. Klünder and E. Frey. Phys. Rev. Lett. Online

Kontakt:
Prof. Dr. Erwin Frey
Statistical and Biological Physics
Arnold Sommerfeld Center for Theoretical Physics
Ludwig-Maximilians-Universität (LMU)
Theresienstr. 37
D-80333 Munich
Phone: +49 (0)89 / 2180 – 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften