Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik: Stabile Grenzen in der Natur

22.01.2013
„Ein bißchen schwanger gibt es nicht.“ Der Spruch macht deutlich, dass die Natur oft eindeutige Entscheidungen trifft. Wie ihr das gelingt, haben LMU-Wissenschaftler anhand eines theoretischen Modells berechnet.
Ein Beispiel für solche Ja-Nein-Regeln ist die Entwicklung eines Embryos. Aus einem homogenen Zellhaufen differenzieren sich die Zellen zu verschiedenen Gewebearten. Die Grenzen zwischen zwei Zellgruppen verlaufen dabei stets definiert und fast unabhängig von Störfaktoren. Physiker um den NIM-Wissenschaftler Professor Erwin Frey (LMU) sind nun der Frage nachgegangen, wie solche Grenzen generell besonders scharf und zugleich unempfindlich gegen Störungen sein können.

Klare Grenzen setzen

Im Fall der Embryoentwicklung der Fruchtfliege Drosophila kommt das Signal zur Zelldifferenzierung von der Mutter. Sie gibt eine Substanz ab, die durch das Embryogewebe diffundiert. Dabei sinkt die Konzentration abhängig von der Entfernung. Eine solche Konzentrationskurve kann jedoch keine eindeutige Ja-Nein-Aussage vermitteln. Dazu muss das Signal der Mutter über zwei „nicht-linearen Zwischenschritte“ moduliert werden.
An die Signalsubstanz ist ein Protein gekoppelt, dessen Konzentration entscheidet, welche Zellen sich zum Kopf und welche zum Rumpf der Fliege entwickeln. Eine eindeutige Grenze entsteht, wenn sich die Konzentration des Proteins sehr schnell in einem sehr schmalen, definierten Bereich des Zellhaufens ändert. Ein Schritt dorthin ist bereits bekannt: Wenn das Protein eine bestimmte Konzentration erreicht hat, beginnt es seine eigene Synthese selber zu verstärken. Doch laut den Münchner Physikern reicht diese eine Modulation für eine klare Grenze nicht aus. „Wir konnten in einem allgemeinen Modell zeigen, dass dazu eine zusätzliche, nichtlineare Vorstufe notwendig ist“, so Steffen Rulands, der als Doktorand an dem Projekt arbeitet.

Umgang mit Störfaktoren

Zudem untersuchten die Wissenschaftler, wie das System Störfaktoren ausschaltet und so die Grenzen stets an der gleichen Position im Gewebe halten kann.

Äußere Faktoren wie Temperaturschwankungen können die Grenze zwischen zwei Zelltypen räumlich verschieben. Hinzu kommen innere Störungen, das sogenannte „Rauschen“: In einer Zelle befinden sich aufgrund ihrer geringen Größe verhältnismäßig wenig Proteine. Dadurch hat das Verhalten jedes einzelnen deutliche Auswirkungen auf das Gesamtsystem.

Die Berechnungen der Münchner Wissenschaftler ergaben, dass sich der Organismus entscheiden muss, ob er innere oder äußere Störungen verhindert. Die jeweils anderen Störungen muss er mit möglichst geringem Energieverlust eindämmen oder hinnehmen. Gegen das Rauschen könnte er beispielsweise die Gesamtproteinzahl erhöhen, gegen Außenfaktoren wie Temperaturschwankungen eine Isolierschicht entwickeln.

Die neuen Erkenntnisse zum Prinzip der stabilen natürlichen Grenzen könnten in Zukunft auch Wissenschaftlern anderer Disziplinen bei ihrer Forschung weiterhelfen. Beispiele wären die Einstellung biochemischer Reaktionen in der Biotechnologie, Prozesse, die die Zellteilung vorbereiten, oder Grenzen in der Ausbreitung verschiedener Tierarten. (NIM)

Publikation:
Stability of localized wave fronts in bistable systems. S. Rulands, B. Klünder and E. Frey. Phys. Rev. Lett. Online

Kontakt:
Prof. Dr. Erwin Frey
Statistical and Biological Physics
Arnold Sommerfeld Center for Theoretical Physics
Ludwig-Maximilians-Universität (LMU)
Theresienstr. 37
D-80333 Munich
Phone: +49 (0)89 / 2180 – 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen