Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Mustergültige Zellgeometrie

14.01.2016

Die richtige Verteilung von Proteinen in der Zelle ist für viele Lebensprozesse entscheidend. LMU-Wissenschaftler haben ein neues Modell entwickelt, wie diese Muster entstehen. Ein wichtiger Faktor ist die Form der Zelle.

Das gestreifte Fell des Zebras, gebänderte Muschelschalen oder auch die Anordnung reifer Kerne in der Sonnenblume sind offensichtliche Beispiele für natürliche Muster.


Stäbchenförmige E. coli Bakterien.

Foto: Dr Kateryna / Fotolia.com

Auch auf zellulärer Ebene kommt es zur Musterbildung – und diese biologischen Muster sind für viele Lebensvorgänge essenziell: Innerhalb einzelner Zellen legt die Verteilung bestimmter Proteine – das Proteinmuster – beispielsweise fest, an welcher Stelle die Mutterzelle geteilt wird.

Wissenschaftler um den LMU-Physiker Professor Erwin Frey haben nun mithilfe von Computersimulationen untersucht, wie sich solche Proteinmuster in Bakterienzellen bilden können. Dabei haben sie einen neuen Mechanismus entdeckt, der auf grundlegenden biochemischen Reaktionen beruht und stabile Muster erzeugt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin PNAS.

„Wir haben die Musterbildung am Beispiel des stäbchenförmigen Bakteriums E.coli simuliert“, sagt Frey. E.coli-Zellen teilen sich mit erstaunlicher Präzision in der Mitte ihrer Längsachse. Maßgeblich daran beteiligt sind die sogenannten Min-Proteine MinC, MinD und MinE, die zwischen den beiden Enden der Zelle hin und her strömen.

Angetrieben wird der Pendelverkehr von einem komplexen Wechselspiel der beiden Min-Proteine MinD und MinE, in dessen Verlauf Komplexe dieser Proteine an die Zellmembran binden und sich aufgrund spezifischer biochemischer Reaktionen wieder lösen. Das Min-System erzeugt ein bipolares Muster, bei dem die Proteinkonzentration an den Zellpolen höher ist als in der Mitte. Dadurch wird die Teilung in der Nähe der Zellpole verhindert, aber nicht in der Mitte der Zelle.

Bindung am Stäbchenende bevorzugt

Die Wissenschaftler haben nun ein Modell entwickelt, in dem ein solches bipolares Muster durch ein einziges Protein – AtMinD – erzeugt wird: „Grundlage dafür waren experimentelle Beobachtungen, die zeigten, dass E.coli-Mutanten, in denen MinD und MinE durch das homologe Protein AtMinD aus den Choloroplasten der Gänserauke ersetzt werden, ebenfalls ein bipolares Muster bilden“, sagt Frey.

AtMinD kommt in zwei Formen vor, die beide an die Zellmembran binden können. Die Musterbildung durch AtMinD-Proteine basiert wie bei den Min-Proteinen darauf, dass diese abwechselnd an die Zellmembran binden und sich wieder ablösen, wobei vergleichbare biochemische Reaktionen wie beim E. coli Min-System ablaufen.

„In unserem minimalen Modell beruht die Musterbildung auf dem Massenwirkungsgesetz und wird durch die unterschiedlichen Membranaffinitäten der beiden Formen von AtMinD gesteuert. Dabei spielt die Geometrie der Zelle eine große Rolle, wie wir zeigen konnten“, sagt Frey: Die Wahrscheinlichkeit, dass ein im Zellinneren diffundierendes Protein auf die Zellmembran trifft und an sie binden kann, ist umso größer, je mehr Membranfläche das Protein erreichen kann – bei stäbchenförmigen Bakterien ist das wegen der Krümmung der Membran am Stäbchenende in der Nähe der beiden Pole der Fall.

Deshalb binden dort die meisten Proteine und es entsteht ein bipolares Muster. Gingen die Wissenschaftler von einer kugelförmigen Zelle aus, verschwand die Polarität. „Im Unterschied zu früheren Theorien setzt das neue Modell nicht voraus, dass Proteine den Grad der Zellmembrankrümmung erkennen, und es müssen auch keine Reaktionsraten angepasst werden“, erklärt Frey. „Damit unterscheidet sich unser Modell ganz grundlegend von dem berühmten Turing-Mechanismus für Musterbildung und hat das Potenzial, eine völlig neue Sichtweise über Musterbildung in biologischen Systemen einzuführen.“

Als nächstes Ziel haben sich die Wissenschaftler vorgenommen, nach weiteren ähnlich einfachen Systemen zu suchen. „Wenn es gelingt, solche Systeme nachzubauen, könnte man verschiedene Minimal-Module zusammenfügen und so Schritt für Schritt diverse wichtige zelluläre Funktionen nachstellen – langfristig könnte dies zur Entwicklung einer ,künstlichen Zelle‘ beitragen, die hilft, komplexe biologische Prozesse besser zu verstehen“, schließt Frey.

Publikation:
Geometry-induced protein pattern formation
Dominik Thalmeier, Jacob Halatek, and Erwin Frey
PNAS 2016

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
E-Mail: frey@lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie