Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Mustergültige Zellgeometrie

14.01.2016

Die richtige Verteilung von Proteinen in der Zelle ist für viele Lebensprozesse entscheidend. LMU-Wissenschaftler haben ein neues Modell entwickelt, wie diese Muster entstehen. Ein wichtiger Faktor ist die Form der Zelle.

Das gestreifte Fell des Zebras, gebänderte Muschelschalen oder auch die Anordnung reifer Kerne in der Sonnenblume sind offensichtliche Beispiele für natürliche Muster.


Stäbchenförmige E. coli Bakterien.

Foto: Dr Kateryna / Fotolia.com

Auch auf zellulärer Ebene kommt es zur Musterbildung – und diese biologischen Muster sind für viele Lebensvorgänge essenziell: Innerhalb einzelner Zellen legt die Verteilung bestimmter Proteine – das Proteinmuster – beispielsweise fest, an welcher Stelle die Mutterzelle geteilt wird.

Wissenschaftler um den LMU-Physiker Professor Erwin Frey haben nun mithilfe von Computersimulationen untersucht, wie sich solche Proteinmuster in Bakterienzellen bilden können. Dabei haben sie einen neuen Mechanismus entdeckt, der auf grundlegenden biochemischen Reaktionen beruht und stabile Muster erzeugt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin PNAS.

„Wir haben die Musterbildung am Beispiel des stäbchenförmigen Bakteriums E.coli simuliert“, sagt Frey. E.coli-Zellen teilen sich mit erstaunlicher Präzision in der Mitte ihrer Längsachse. Maßgeblich daran beteiligt sind die sogenannten Min-Proteine MinC, MinD und MinE, die zwischen den beiden Enden der Zelle hin und her strömen.

Angetrieben wird der Pendelverkehr von einem komplexen Wechselspiel der beiden Min-Proteine MinD und MinE, in dessen Verlauf Komplexe dieser Proteine an die Zellmembran binden und sich aufgrund spezifischer biochemischer Reaktionen wieder lösen. Das Min-System erzeugt ein bipolares Muster, bei dem die Proteinkonzentration an den Zellpolen höher ist als in der Mitte. Dadurch wird die Teilung in der Nähe der Zellpole verhindert, aber nicht in der Mitte der Zelle.

Bindung am Stäbchenende bevorzugt

Die Wissenschaftler haben nun ein Modell entwickelt, in dem ein solches bipolares Muster durch ein einziges Protein – AtMinD – erzeugt wird: „Grundlage dafür waren experimentelle Beobachtungen, die zeigten, dass E.coli-Mutanten, in denen MinD und MinE durch das homologe Protein AtMinD aus den Choloroplasten der Gänserauke ersetzt werden, ebenfalls ein bipolares Muster bilden“, sagt Frey.

AtMinD kommt in zwei Formen vor, die beide an die Zellmembran binden können. Die Musterbildung durch AtMinD-Proteine basiert wie bei den Min-Proteinen darauf, dass diese abwechselnd an die Zellmembran binden und sich wieder ablösen, wobei vergleichbare biochemische Reaktionen wie beim E. coli Min-System ablaufen.

„In unserem minimalen Modell beruht die Musterbildung auf dem Massenwirkungsgesetz und wird durch die unterschiedlichen Membranaffinitäten der beiden Formen von AtMinD gesteuert. Dabei spielt die Geometrie der Zelle eine große Rolle, wie wir zeigen konnten“, sagt Frey: Die Wahrscheinlichkeit, dass ein im Zellinneren diffundierendes Protein auf die Zellmembran trifft und an sie binden kann, ist umso größer, je mehr Membranfläche das Protein erreichen kann – bei stäbchenförmigen Bakterien ist das wegen der Krümmung der Membran am Stäbchenende in der Nähe der beiden Pole der Fall.

Deshalb binden dort die meisten Proteine und es entsteht ein bipolares Muster. Gingen die Wissenschaftler von einer kugelförmigen Zelle aus, verschwand die Polarität. „Im Unterschied zu früheren Theorien setzt das neue Modell nicht voraus, dass Proteine den Grad der Zellmembrankrümmung erkennen, und es müssen auch keine Reaktionsraten angepasst werden“, erklärt Frey. „Damit unterscheidet sich unser Modell ganz grundlegend von dem berühmten Turing-Mechanismus für Musterbildung und hat das Potenzial, eine völlig neue Sichtweise über Musterbildung in biologischen Systemen einzuführen.“

Als nächstes Ziel haben sich die Wissenschaftler vorgenommen, nach weiteren ähnlich einfachen Systemen zu suchen. „Wenn es gelingt, solche Systeme nachzubauen, könnte man verschiedene Minimal-Module zusammenfügen und so Schritt für Schritt diverse wichtige zelluläre Funktionen nachstellen – langfristig könnte dies zur Entwicklung einer ,künstlichen Zelle‘ beitragen, die hilft, komplexe biologische Prozesse besser zu verstehen“, schließt Frey.

Publikation:
Geometry-induced protein pattern formation
Dominik Thalmeier, Jacob Halatek, and Erwin Frey
PNAS 2016

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
E-Mail: frey@lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics