Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bionikforschung an der Kieler Universität: "Der Käfer macht es uns vor"

09.08.2012
Insekten sind wahre Meister, wenn es darum geht, an trockenen Oberflächen entlang zu spazieren. Aber in der Natur wird es auch oft genug feucht. Pflanzen können besonders nach einem Regenschauer längere Zeit von Wasser bedeckt sein.
Bionik-Experte Gorb von der Christian-Albrechts-Universität zu Kiel (CAU) und Materialwissenschaftlerin Hosoda vom National Institute for Material Science, Japan, haben die Eigenschaft von terrestrischen Blattkäfern, die sich unter Wasser fortbewegen können, analysiert. Dem Käferprinzip folgend entwickelten sie ein künstliches Material, das unter Wasser an Festkörpern haftet.

Der Grüne Sauerampferkäfer (Gastrophysa viridula) ist Vorbild für ein neues Material in der Bionik. Es kann genauso wie das Insekt unter Wasser an Oberflächen haften.
Copyright: CAU, Foto: Stanislav Gorb

http://www.uni-kiel.de/aktuell/pm/2012/2012-227-unterwasser.shtml

Insekten sind wahre Meister, wenn es darum geht, an trockenen Oberflächen entlang zu spazieren. Aber in der Natur wird es auch oft genug feucht. Pflanzen können besonders nach einem Regenschauer längere Zeit von Wasser bedeckt sein. Bionik-Experte Professor Stanislav Gorb von der Christian-Albrechts-Universität zu Kiel (CAU) und Materialwissenschaftlerin Professorin Naoe Hosoda vom National Institute for Material Science, Japan, haben die herausragende Eigenschaft von terrestrischen Blattkäfern, die sich unter Wasser fortbewegen können, analysiert. Dem Käferprinzip folgend entwickelten sie ein künstliches Material, das unter Wasser an Festkörpern haftet. Die Ergebnisse sind in der heutigen online-Ausgabe, 8. August, der Fachzeitschrift „Proceedings of the Royal Society B” veröffentlicht.

„Das war eine sehr schöne Zusammenarbeit mit Frau Hosoda“, berichtet Gorb. „Es ist allgemein bekannt, dass man an der Luft zwei Festkörper mithilfe von Wasser zum Haften bringen kann. Wie ein Blatt Papier, das auf dem Tisch kleben bleibt, wenn es nass wird.“ Die Oberflächenspannung der Flüssigkeit an der Grenzfläche zwischen Luft, Flüssigkeit und Festkörper, genannt Kapillarkraft, machen sich auch Insekten zunutze. Anstelle von Wasser kleben sie mithilfe von Öl an ihren Fußhärchen auf Oberflächen.

„Das gleiche Prinzip unter Wasser bleibt eine spannende Perspektive, denn ohne Luft können die Kapillarkräfte nicht wirken. Der Käfer macht es uns vor. Er nimmt einfach Luftblasen mit unter Wasser“, so Gorb weiter. Mit der eingeschlossenen Luft zwischen ihren Fußhärchen schafft der Käfer genau die Grenzfläche zwischen Luft, Flüssigkeit und Festkörper, die auch für eine Haftung unter Wasser notwendig ist. Bedingung ist allerdings, dass die Oberfläche, auf der der Käfer laufen will, in einem bestimmten Maße wasserabweisend ist. Das sei allerdings in der Natur oft der Fall. Allein die Oberseite von Blättern sei häufig etwas hydrophob, erklärt der Kieler Wissenschaftler.

Gorb: „Von dieser Idee inspiriert haben wir eine künstliche Silikon-Polymer-Struktur hergestellt, die die Eigenschaften der Unterwasserhaftung des Käfers imitiert.“ Die Herausforderung dabei war, dass das Material die Luft unter Wasser halten muss. Die Lösung liegt in einer Mikrostruktur, welche ähnlich wie die Käferhärchen Luftblasen halten kann. Damit ist ein Material geschaffen, dass ohne Klebstoff unter Wasser an Festkörpern haftet. Mögliche Anwendungsgebiete seien Unterwasseroptik, aber auch jede Art von Unterwassertechnik.

Originalpublikation:
http://rspb.royalsocietypublishing.org/content/early/2012/07/31/rspb.2012.1297.f...

doi:10.1098/rspb.2012.1297

Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2012/2012-227-1.jpg
Bildunterschrift: Der Grüne Sauerampferkäfer (Gastrophysa viridula) ist Vorbild für ein neues Material in der Bionik. Es kann genauso wie das Insekt unter Wasser an Oberflächen haften.

Copyright: CAU, Foto: Stanislav Gorb

http://www.uni-kiel.de/download/pm/2012/2012-227-2.jpg
Bildunterschrift: Das Käfergeheimnis sind die Härchen an den Füßen. Hier eine Aufnahme im Kieler Rasterelektronenmikroskop. Die Enden der Härchen sind ca. 5 Mikrometer breit.

Copyright: CAU, Stanislav Gorb

http://www.uni-kiel.de/download/pm/2012/2012-227-3.jpg
Bildunterschrift: Oben: Der Käfer unter Wasser haftet an einer Oberfläche; Mitte: Aufnahme des Käferfußes von unten. Links ist er an der Luft, rechts unter Wasser. Die einzelnen Härchen haften am Untergrund; Unten: Die neu entwickelte Silikon-Polymer-Struktur ist unter dem Spielzeugauto angebracht. Das Material lässt das Auto am Glas unter Wasser haften.

Copyright: CAU, Quelle: Stanislav Gorb und Naoe Hosoda

Christian-Albrechts-Universität zu Kiel
Presse und Kommunikation, Dr. Boris Pawlowski, Text: Claudia Eulitz
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: http://www.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie