Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomoleküle vom Band

25.09.2013
Eiweiße im industriellen Maßstab ohne Zellen herzustellen – das ist das ehrgeizige Ziel der »Zellfreien Bioproduktion«.

Mit dem Verfahren könnten sich biologische Wirkstoffe künftig schneller und sparsamer bereitstellen lassen als mit herkömmlichen Techniken. Wissenschaftler und Ingenieure aus acht Fraunhofer-Instituten haben in einem inter-disziplinären Forschungsprojekt Bioreaktoren entwickelt, die ohne Hilfe intakter Zellen Proteine produzieren. Demonstrationsmodelle der Reaktoren werden vom 8. bis 10. Oktober 2013 auf der BIOTECHNICA in Hannover am Stand E09 in Halle 9 erstmals der Öffentlichkeit vorgestellt.


Es ist effizient, Proteine außerhalb lebender Zellen zu produzieren.

Insulin, Antikörper als Basis für Impfstoffe und Krebsmedikamente, Enzyme für die Lebensmittel-, Kosmetik und Waschmittelindustrie – schon heute lassen sich viele dieser Wirkstoffe in großem Maßstab biotechnologisch herstellen. Derzeit wird der Bedarf an Biomolekülen oft noch mit Hilfe von lebenden Zellen oder Organismen gedeckt.

Dazu statten die Forscher Bakterien, Hefen, tierische oder pflanzliche Zellkulturen mit dem Gen aus, das für das gewünschte Protein codiert. Dann werden die veränderten Organismen in Bioreaktoren massenhaft kultiviert, um schließlich das Protein zu isolieren und zu reinigen. Diese Technologie ist zwar sehr leistungsfähig, aber einige Nachteile. Denn viele dieser Schritte sind zeitaufwändig und teuer. Bakterien und andere Zellen verbrauchen zudem einen Teil der eingesetzten Ressourcen, um sich selbst am Leben zu halten – und senken so die Effizienz der Proteinproduktion.

Den größten Nachteil zellbasierter Verfahren nennt Projektleiter Prof. Frank Fabian Bier vom Fraunhofer-Institut für Biomedizinische Technik IBMT in Potsdam: »Zahlreiche Proteine lassen sich in Zellen schlecht oder gar nicht herstellen. Zum Beispiel Membranproteine, die in der pharmakologischen Forschung eine große Rolle spielen. Oder Proteine, die in hohen Konzentrationen die Zelle vergiften und eben deshalb für die Krebstherapie hilfreich sein könnten«.

Proteine ohne Zellen produzieren

Diese Probleme fallen bei den zellfreien Verfahren weg. Denn anstelle lebender Zellen wird dabei nur deren Syntheseapparat in Anspruch genommen. Doch wie funktioniert die »Biomolekül-Produktion vom Band«? Zunächst lösen die Fraunhofer-Forscher die Zellen auf. So gewinnen sie ein Gemisch, auch Lysat genannt, das alle zur Proteinsynthese notwendigen Komponenten enthält. Dazu gehören neben Enzymen auch biologisch aktive Organellen und Membranteile, die den Zusammenbau der Proteine entsprechend ihrer genetischen Bauanleitung ausführen. Die gewünschten Gene kann man direkt dem Lysat zugeben. Sie müssen nicht mehr erst aufwändig ins zelleigene Erbgut eingeschleust werden.

Das Prinzip der zellfreien Proteinsynthese ist seit langem bekannt. Ziel des Fraunhofer-Verbundprojekts ist es, das Verfahren für die industrielle Fertigung zu adaptieren. Die Idee ist aus dem Strategieprozess »Biotechnologie 2020+« des Bundesforschungsministeriums BMBF hervorgegangen und wird mit 15 Millionen Euro gefördert; weitere 6 Millionen Euro investiert die Fraunhofer-Gesellschaft. Seit Projektbeginn vor zwei Jahren ist viel erreicht worden: Zunächst wurden automatisierte Zellernte- und Aufschlussverfahren zur Herstellung von Lysaten aus Bakterien-, Tabak- und Insektenzellen entwickelt. Diese Lysate lassen sich vollautomatisch mit Aminosäuren und ausgewähltem Genmaterial befüllen, um so die Synthese spezifischer Proteine in Gang zu setzen.

Zwei Konzepte für Bioreakoren

Derzeit werden zwei Reaktorkonzepte für die industrielle Anwendung erprobt. Das eine besteht aus kleinen Synthesekammern, in denen das Lysat über eine teildurchlässige Membran mit frischen Reaktionsbestandteilen beliefert und zugleich von störenden Stoffwechselprodukten befreit werden kann. Durch dieses Ver- und Entsorgungssystem lässt sich die Proteinsynthese mehrere Tage lang aufrechterhalten. Das andere stellt eine mikrofluidische Plattform dar, auf der das Ablesen der Gene und die eigentliche Proteinsynthese – ähnlich wie bei Tieren- und Pflanzen – in getrennten Räumen stattfinden. Dieses System eignet sich besonders für Lysate aus Tier- und Pflanzenzellen.

Die Modellreaktoren sind das Ergebnis einer intensiven Zusammenarbeit von Biologen, Physikern, Maschinenbauern und Elektronikern aus den acht beteiligten Fraunhofer-Instituten. »Wir haben seit Beginn des Projektes im März 2011 eine Menge Energie darauf verwendet, geeignete Lysate zu produzieren, Messmethoden zu etablieren und Komponenten zusammenzustellen, um die Prozesse zu kontrollieren«, betont Prof. Bier. Sein Fazit: »Zellfreie Systeme lassen sich noch weiter optimieren und haben ein enormes Potenzial, auch in großem Maßstab deutlich ökonomischer und ressourcenschonender als bisher wichtige Biomoleküle zu produzieren«.

Birgit Niesing | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.zellfreie-bioproduktion.fraunhofer.de

Weitere Berichte zu: Bakterien Biomolekül Bioreaktor Lysat Organismus Protein Proteinsynthese Wirkstoff enzyme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie