Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomimetische Nanotechnologie: Entwicklung einer neuen Art von Biosensoren

07.10.2008
Forscher des Jean-Pierre-Ebel-Instituts für strukturelle Biologie (IBS) und des Forschungsinstituts für Technologie und Lebenswissenschaften haben eine neue Generation von Biosensoren entwickelt.

Durch Protein-Engineering ist es ihnen gelungen, Proteine zu generieren, die zwei Funktionen gleichzeitig erfüllen: die Erkennung eines chemischen Signals und seine Umwandlung in ein elektrisches Signal. Diese neue Art von Sensoren könnte den Grundstein für miniaturisierte Erkennungssysteme bilden, die für Medikamententests, Diagnoseverfahren oder das Aufspüren von toxischen Stoffen eingesetzt werden können.

Die Nachfrage nach biologischen Analyseverfahren, die möglichst nah am Patienten angewandt werden können, wird immer größer. Aus diesem Grund beschäftigt sich die Forschung im Bereich der Biotechnologie immer intensiver mit der Entwicklung neuer Nanotechnologien, die das schnelle und einfache Aufspüren von Informationen ermöglichen.

In diesem Zusammenhang hat das Forscherteam des IBS die Proteine untersucht, die für die interzelluläre Signalübertragung verantwortlich sind. Da die Zelle von einer undurchlässigen Membran aus Lipiden umgeben ist, wird die Übertragung von Informationen und Molekülen durch spezifische Membranproteine ermöglicht. Dazu zählen einerseits die Rezeptoren, die die von anderen Zellen oder aus der Umwelt kommenden Signale erkennen, und andererseits die Ionenkanäle, die dafür sorgen, dass ein elektrisches Signal durch einen Ionentransfer generiert wird.

Den französischen Forschern ist es nun gelungen, künstliche Proteine herzustellen, die gleichzeitig beide Eigenschaften aufweisen. Die ICCR (für Ion Channel Coupled Receptor) getauften Nanoobjekte sind etwa 10 nm breit. Mit Hilfe ihrer Eigenschaft als Rezeptor können sie biologische Moleküle aufspüren, wie z.B. Hormone oder Neurotransmitter, und dank ihrer Kanal-Funktion ein elektrisches Signal erzeugen. Diese Sensoren werden auch bei einer sehr geringen Anzahl von Molekülen wirksam. Die Fähigkeit der ICCR direkt ein Signal erzeugen zu können, ist ein entscheidender Vorteil im Hinblick auf ihre Einbeziehung in elektronische Miniatursysteme.

Zunächst haben die Forscher Biosensoren für zwei wichtige pharmakologische Ziele konzipiert, um die Entwicklung von Screening-Tests für Medikamente zu ermöglichen. Andere Anwendungen, wie beispielsweise in-vitro-Diagnoseverfahren oder die Erfassung toxischer Substanzen, sind bereits vorgesehen.

Diese Arbeit, die im Rahmen des europäischen Projekts Receptronics durchgeführt wurde, stellt einen der ersten Erfolge des biomimetrischen Konzeptes in der Nanotechnologie dar.

Kontakte:

Michel Vivaudou - Laboratoire des protéines membranaires, Institut de Biologie Structurale Jean-Pierre Ebel - CEA/CNRS/Université Joseph Fourier - 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1 - Tel: +33 438 784 867 - E-Mail: michel.vivaudou@ibs.fr
Christophe Moreau - E-Mail: christophe.moreau@ibs.fr
http://www.receptronics.org
Quelle: Pressemitteilung des französischen Zentrums für wissenschaftliche Forschung (CNRS) - 08.09.2008 http://www2.cnrs.fr/presse/communique/1414.htm

Redakteurin: Claire Nicolas, claire.nicolas@diplomatie.gouv.fr

Wissenschaft-Frankreich (Nummer 150 vom 06.10.08)
Französische Botschaften in Deutschland und Österreich
Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

| Wissenschaft Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/allemand

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik

Neue Perspektiven durch gespiegelte Systeme

05.12.2016 | Physik Astronomie

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie