Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomedizinische Mikrosysteme im Einsatz für die Gesundheit - Point of Care Testing (POCT): SmartHEALTH

30.08.2010
Zwar hat Krebs seinen Schrecken noch immer nicht verloren, trotzdem sind die Heilungschancen bei vielen Krebsarten recht gut, wenn die Erkrankung rechtzeitig erkannt und behandelt wird. Die Diagnose einer Krebserkrankung erfolgt in zunehmendem Maße mit Hilfe so genannter Krebsmarker, beispielsweise Proteine oder DNA-Abschnitte, welche in Körperflüssigkeiten oder Gewebeproben nachgewiesen werden.

Idealerweise soll eine solche Diagnose mittels kostengünstiger, kleiner und portabler Analysegeräte wahlweise im Krankenhaus, beim Fach- oder Hausarzt oder sogar vom Patienten selbst durchgeführt werden können und das Ergebnis innerhalb weniger Minuten vorliegen. Voraussetzung dafür ist, dass die Analysegeräte einfach zu bedienen sind und vor der eigentlichen Messung keine aufwändige Probenaufbereitung – wie beispielsweise Zentrifugieren von Blut – erforderlich ist. Für solche einfach durchführbaren Schnelltests hat sich der Begriff »Point of Care Testing (POCT)« eingebürgert.

Am Fraunhofer-Institut für Biomedizinische Technik (IBMT) im saarländischen St. Ingbert nutzt man Synergien zwischen den vorhandenen Expertisen auf den Gebieten Mikro(bio)sensorik, Biochiptechnologie und Biotelemetrie, um kundenspezifische Entwicklungen kompletter Analysesysteme voranzutreiben. Ein langjähriges Know-how sowie zahlreiche Technologien für eine biochipkompatible Aufbau- und Verbindungstechnik ermöglichen die Integration von Biochips in komplette Analysesysteme, so genannte Lab-On-Chip-Systeme. Die IBMT-Kompetenzen umfassen das Kapseln von Biochips sowie die Integration gekapselter Biochips in Analysekartuschen. Sowohl beim Kapseln als auch bei der Integration stellt die Realisierung von geeigneten miniaturisierten Schnittstellen für die elektrische, fluidische und mechanische Kontaktierung des Biochips sowie der Kartusche eine besondere Herausforderung dar. Elektrische und fluidische Bereiche des Biochips müssen dabei auf engstem Raum zuverlässig voneinander getrennt werden.

Im Rahmen eines Verbundprojekts der Europäischen Union zum Point of Care Testing (POCT) »SmartHEALTH«, koordiniert von Professor Calum McNeil, Universität Newcastle upon Tyne, war das Fraunhofer IBMT neben anderen Partnern an der Entwicklung und Systemintegration der zentralen Biosensors (CDR-Biochip = Circular Disk Resonator) beteiligt.

Ein Lösungsansatz für die im Projekt eingesetzten POCT-Geräte sah vor, die Schritte der Probenaufbereitung und Messung in einer Flüssigkeitskartusche zu implementieren. Die Kartusche ist ein Einwegartikel und wird zur Durchführung einer Diagnose in ein POCT-Analysegerät eingeführt, welches alle auf der Kartusche ablaufenden Schritte steuert und letztlich das Untersuchungsergebnis auf einem Display darstellt. Das Herzstück der Analysekartusche ist ein Biochip.

Das Projekt »SmartHEALTH« fokussiert auf die drei Krebsarten: Brust-, Gebärmutterhals- und Darmkrebs sowie auf Proteine, DNA und mRNA als Biomarker. Für die Markerdetektion stehen innerhalb des Projekts drei verschiedene Biochips zur Verfügung. Die höchste Sensitivität wird von einem von der Universität Newcastle entwickelten Resonator-Biosensor (CDR-Sensor = Circular Disk Resonator – Biosensor) erwartet. Dieser ist in Silizium-Mikromechanik gefertigt und hat Kantenabmessungen von lediglich 2 mm x 2 mm x 0,5 mm. Eine in der Chipmitte angeordnete hauchdünne Siliziummembran mit 200 µm Durchmesser, welche teilweise mit Fängermolekülen belegt ist und in resonante Schwingungen versetzt wird, stellt das eigentliche Messelement des Biochips dar. Zum elektrischen Anregen der resonanten Schwingung und dem Auslesen des Sensorsignals verfügt der Chip über 20 Bondpads, welche im Randbereich des Chips angeordnet sind und elektrisch kontaktiert werden müssen.

Obwohl Techniken zur elektrischen Chipkontaktierung aus der Mikroelektronik hinreichend bekannt und ausgereift sind, stellt die Aufbau- und Verbindungstechnik, wie sie für einen Biochip benötigt wird, ganz besondere Anforderungen an die verwendbaren Materialien und Prozesse. Ein grundlegender Unterschied zu reinen Mikroelektronikchips liegt darin, dass bei Biochips ein Materialtransfer nötig ist, d. h. die zu detektierenden Krebsmarker müssen zur Membran des CDR-Sensors gelangen und mit den auf der Membran immobilisierten Fängermolekülen eine Bindung eingehen. Während also der sensitive Bereich des Biochips mit der Probenflüssigkeit in Kontakt kommen muss, müssen die elektrischen Bereiche, beispielsweise die Bondpads, gekapselt sein, um jeglichen Kontakt mit der Probenflüssigkeit zu vermeiden. Im Falle des CDR-Sensors befinden sich sowohl die sensitive Siliziummembran als auch die Bondpads auf der Chipoberseite. Der geringe Abstand zwischen der Membran und den Bondpads (weniger als 700 µm) macht die elektrische Kontaktierung der Bondpads sowie deren Kapselung, bei gleichzeitigem Aussparen des Membranbereichs, zu einer besonderen Herausforderung.

Das Fraunhofer IBMT zeichnet im Rahmen des Projekts verantwortlich für die Kapselung des CDR-Biochips sowie dessen Integration in das Analysegerät. Dabei sind der Biochip sowie gegebenenfalls eine Vorverstärkerelektronik in eine Einwegkartusche zu integrieren. Elektrische und fluidische Bereiche des Biochips müssen auf engstem Raum zuverlässig voneinander getrennt werden. Die Kartusche muss sowohl eine elektrische als auch eine fluidische Schnittstelle zum Analysegerät zur Verfügung stellen.

Kapselung des Biochips
Die Integration des Biochips in die Kartusche wird mit einem an die Chip-on-Board-Technik angelehnten Verfahren realisiert. Um eine mechanisch robuste elektrische Verbindung zu erhalten, welche zudem extrem flach ist, verwendet das Fraunhofer IBMT für die elektrische Kontaktierung nicht das Drahtbondverfahren, sondern das eigens am Institut entwickelte und patentierte »MicroFlex«-Verfahren. Dabei kommen keine Bonddrähte, sondern in zweilagige Polyimidfolien integrierte Dünnfilmleiterbahnen zum Einsatz. Die gesamte Folie hat eine Dicke von nur 10 µm. Die Enden der Leiterbahnen sind offen und können mit einem handelsüblichen Ball-Wedge-Bonder mit den Bondpads des Biochips sowie den Pads einer Elektronikplatine verbunden werden. Diese Verbindung ähnelt dem mechanischen Nieten, wobei die »Balls« der Bonddrähte als Niet dienen und die Bonddrähte nach dem Setzen der Balls abgerissen werden. Im Gegensatz zur herkömmlichen Chip-on-Board-Technik werden die Chips in Vertiefungen in der Elektronikplatine geklebt, so dass die Chipoberfläche mit der Platinenoberfläche eben abschließt. Durchkontaktierungen in der Platine führen die elektrischen Kontakte zur Platinenrückseite. Anstatt eines üblichen Glob-Tops wird die gesamte Platinenoberseite inklusive Biochipoberfläche mit einer 0,5 mm dicken Epoxidschicht vergossen, welche alle elektrischen Bereiche vor der Probenflüssigkeit schützt. Lediglich der Membranbereich des Biochips ist von der Vergussschicht ausgespart. Um Letzteres zu erreichen, wurde eine maßgeschneiderte Gussform angefertigt. Während des Vergießens liegt eine Silikondichtlippe um die Membran und dichtet gegen den Siliziumchip ab.
Schnittstellenrealisierung
Die Realisierung der fluidischen Schnittstelle zwischen Biochip und Kartusche wurde komfortabel gelöst. Unter Verwendung eines geeigneten doppelseitigen Klebebands wird die oben beschriebene beschichtete Platine gegen die Kartusche geklebt. Dabei besteht ungehinderter fluidischer Kontakt zwischen der auf der Kartusche angeordneten Reaktionskammer und der Biochipmembran, während die elektrischen Bereiche der Platine und des Biochips durch den Verguss vor der Probenflüssigkeit geschützt sind. Den Klebeprozess führte Projektpartner MiniFAB Ltd. (Australien) durch, der auch die Einwegkartusche hergestellt hatte.

Die Realisierung der elektrischen Schnittstelle trägt der Anforderung Rechnung, dass die Kartusche ein Einwegartikel ist, welcher nur für eine einzige Analyse verwendet wird. Eine permanente elektrische Verbindung zwischen Kartusche und Analysegerät, wie beispielsweise eine Lötverbindung, scheidet daher aus. Ungeeignet sind auch Verbindungsmethoden, welche teurere Komponenten auf der Kartusche voraussetzen, wie beispielsweise elektrische Stecker. Die Methode der Wahl sind Federkontaktstifte, die sich im Analysegerät befinden. Nach dem Einschieben in das Analysegerät ist die Kartusche stets so positioniert, dass die Federkontaktstifte mit den Anschlusspads auf der Rückseite der Biochipplatine in Kontakt sind. Auf diese Art und Weise können alle 48 elektrischen Kontakte zwischen Biochip und Analysegerät realisiert werden. Die Federkontaktstifte sind dabei in zwei Reihen angeordnet, mit einem Pitch von 0,8 mm.

Geräteintelligenz und Kommunikation
Die SmartHEALTH-Systemplattform ermöglicht die gleichzeitige Messung und Auswertung von mehreren Analyten auf einem Gerät auf der Basis von Nukleinsäuren und Proteinen am Point-of-Care und kann verschiedene biologische Probentypen verarbeiten. Die Ergebnisse werden mit Hilfe von biostatistischen Verfahren wie Bayes’schen Netze, Neuronalen Netze und »Support Vector Machines« interpretiert. Die intelligenten Geräte identifizieren ihre Anwender und den Patienten wahlweise über integrierte Fingerprint-Leser, Gesundheitskarten wie die eGK oder durch Kennworteingabe. Sie unterstützen unterschiedlichste Point-of-Care-Szenarien in der Primärversorgung und zuhause und können mit Barcode und RFID-Etiketten umgehen. Sie kommunizieren auf medizinischen Standards basierend drahtlos mit Patientenakten des jeweiligen Labor-, Krankenhaus- und Online-Informationssystems unter Wahrung des Datenschutzes. Ferner entwickelte das IBMT unter dem Namen »Semantic Medical Device Space« ein zukunftsweisendes Gerätekommunikationskonzept auf der Basis von Technologien des semantischen Webs, das die Krebsanalysesysteme ad-hoc mit anderen medizinischen Messgeräten Daten austauschen lässt.

Die Kompetenzen des Fraunhofer IBMT im Bereich »Lab-On-Chip« sind jedoch nicht auf das Kapseln und die Bereitstellung der nötigen Schnittstellen beschränkt. Die IBMT-interne Zusammenarbeit verschiedener Arbeitsgruppen erlaubt die kundenspezifische Entwicklung kompletter Analysesysteme.

Ansprechpartner
Dr. Thomas Velten
Fraunhofer-Institut für Biomedizinische Technik (IBMT)
Abteilung Biomedizinische Mikrosysteme
Telefon: +49 (0) 6894/980-301
thomas.velten@ibmt.fraunhofer.de

Annette Maurer | idw
Weitere Informationen:
http://www.ibmt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie