Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomaterialien mit steuerbarer Elastizität: Muschelfäden weisen den Weg zu künftigen Innovationen

26.02.2014

Über einen ungewöhnlichen Forschungserfolg berichtet eine Forschungsgruppe der Universität Bayreuth in der aktuellen Ausgabe von „Nature Communications“: Erstmals ist es gelungen, die Struktur und die Funktion eines Proteins aufzuklären, das in den Fäden von Miesmuscheln enthalten ist. Dieses Protein wurde als Ursache dafür identifiziert, dass der Faden der Miesmuschel unterschiedliche Grade der Elastizität aufweist und somit die Muschel in der Brandung optimal schützt. Die erfolgreiche Synthese und Analyse des Proteins im Labor eröffnet spannende Perspektiven für neuartige Biomaterialien, deren Elastizität sich mit hoher Genauigkeit steuern lässt.

Muschelbyssus gilt seit der Antike als ein wertvolles Material, das sich für sehr feine und ungewöhnlich haltbare Textilien hervorragend eignet. Das Interesse richtete sich dabei insbesondere auf die Edle Steckmuschel (Pinna nobilis). Ihre Fäden wurden zu einem Gewebe weiterverarbeitet, das vor allem wegen seines goldenen Schimmers sehr begehrt war. Ein besonders prominentes Beispiel für einen vermutlich auf der Basis von Steckmuschelfäden gefertigten ist der „Schleier von Mannopello“, der nahe der italienischen Ortschaft Mannopello in der Kirche Santuario del Volto Santo als Reliquie aufbewahrt wird.


Miesmuschel auf einem Stein. Mit ihren Byssusfäden kann sie sich an festen Gegenständen in der Brandung festsetzen.

Foto: Lehrstuhl für Biomaterialien, Universität Bayreuth; zur Veröffentlichung frei.

Muschelbyssus bezeichnet den Halteapparat aus dünnen beweglichen Fäden, mit denen sich Muscheln an Felsen, Holz oder anderen festen Gegenständen in der Brandung festsetzen. Sie wachsen aus dem Muschelfuß im Inneren der Muscheln und verfügen über besonders klebende „Füße“, die ein Wegrutschen ins offene Meer verhindern. Für die Byssusfäden der Miesmuschel ist es charakteristisch, dass ihre äußeren Enden viel steifer sind als die dem Muschelinneren nächstgelegenen, deutlich flexibleren Abschnitte. Dadurch sind die Fäden einerseits hinreichend fest, um den Strömungen des Wassers widerstehen zu können; andererseits sind sie zum Muschelinneren hin so flexibel, dass die weichen Muskeln der Muschel nicht verletzt werden. 

Unterschiedliche Grade der Elastizität im Muschelfaden:
Eine Bayreuther Forschergruppe identifiziert die Ursache

An der Universität Bayreuth hat eine Forschungsgruppe um Prof. Dr. Thomas Scheibel am Lehrstuhl für Biomaterialien und Prof. Dr. Clemens Steegborn am Lehrstuhl für Biochemie einen der Gründe für die unterschiedliche Elastizität in den Muschelfäden entdeckt. Es war bereits bekannt, dass jeder Byssusfaden einer Miesmuschel mehrere, nebeneinander in Längsrichtung verlaufende Stränge – die sogenannten Fibrillen – enthält. Die Fibrillen bestehen aus Proteinen, und zwar aus langen Kollagenmolekülen. In ihren winzigen Zwischenräumen und um die Stränge herum befinden sich hingegen andere Proteine. Diese bilden eine Matrix, in welche die Fibrillen eingebettet sind. Insofern handelt es sich bei den Muschelfäden um natürliche Kompositmaterialien, die eine ähnliche Grundstruktur haben wie moderne Verbundwerkstoffe mit ihren spezifischen, auf die jeweiligen Funktionen hin zugeschnittenen Eigenschaften.

Wie die Bayreuther Forscher jetzt herausgefunden haben, ist eine allmähliche Änderung der Bestandteile der Proteinmatrix im Verlauf des Muschelfadens für die unterschiedliche Elastizität verantwortlich. Ein Faden enthält in seinem äußeren Ende nicht die gleichen Proteine wie in dem flexibleren, dem Muschelinneren nähergelegenen – und deshalb als „proximal“ bezeichneten – Abschnitt. Es gibt sogar ein Protein, das nur im proximalen Abschnitt enthalten ist. Und genau dieses Protein ist die Ursache für die ausgeprägtere Flexibilität dieses Fadenabschnitts. Seine Moleküle sind hier in hoher Zahl als winzige Abstandshalter zwischen den einzelnen Fibrillen angeordnet und bilden so einen wesentlichen Bestandteil der Matrix.

Erstmalige Aufklärung der Struktur eines Byssus-Proteins:
Doppelte Bindung an die Kollagenstränge

In den Bayreuther Laboratorien wurde die molekulare Struktur dieses Proteins – des sogenannten „Protein Thread Matrix Protein 1 (PTMP1)“ – präzise bestimmt. „Damit ist es überhaupt zum ersten Mal gelungen, die molekulare Struktur eines Byssus-Proteins aufzuklären“, freut sich Prof. Scheibel. „Es handelt sich um eine Struktur, die wir in dieser Form bei Proteinen bisher noch nicht kannten.“, so Prof. Steegborn. Ein PTMP1-Molekül besteht nämlich aus drei Teilen: zwei Domänen, die einzeln genommen anderen Proteinen ähneln, und einem Verbindungsstück in der Mitte, das diese Domänen auf einzigartige Weise verknüpft. Das Molekül fungiert innerhalb des Muschelfadens genau dadurch als Abstandshalter, dass seine beiden Domänen eine passende Längsausrichtung erhalten und an denselben Kollagenstrang binden; vermutlich ähnlich wie ein Turner mit beiden Händen eine Reckstange fest umfasst. Viele PTMP1-Moleküle, die sich auf diese Weise an die Fibrillen „klammern“, sorgen im proximalen Abschnitt des Muschelfadens für feste Abstände zwischen den Fibrillen. Sie verleihen damit dem Faden eine höhere Elastizität.

Elastizität gezielt steuern:
Spannende Perspektiven für neue Biomaterialien

Die biotechnologische Herstellung der PTMP1-Moleküle eröffnet spannende Perspektiven für die Entwicklung neuartiger Biomaterialien. In der Chirurgie werden bereits heute Implantate eingesetzt, die hauptsächlich aus Kollagen bestehen. Es wäre ein entscheidender Vorteil für die Patienten, wenn es möglich wäre, in künstliche Gelenke oder in künstliches Hautgewebe graduelle Übergänge von elastischeren zu festeren Bereichen einzubauen. „Unsere bisherigen Forschungsergebnisse haben gezeigt: Biotechnologisch hergestellte Moleküle des Byssus-Proteins eignen sich als Abstandshalter, mit denen sich der Elastizitätsgrad von Biomaterialien gezielt steuern lässt“, erklärt Prof. Scheibel. Und nicht nur für medizinische Anwendungen, sondern beispielsweise auch für technische Textilien könnten sich die Proteine der Muschelfäden eines Tages als hochinteressante Bausteine erweisen.

Veröffentlichung:

Michael H. Suhre, Melanie Gertz, Clemens Steegborn und Thomas Scheibel,
Structural and Functional Features of a Collagen Binding Matrix Protein from the Mussel Byssus,
Nature Communications (2014)
DOI: 10.1038/ncomms4392

Ansprechpartner:

Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl Biomaterialien
Fakultät für Ingenieurwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie