Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomaterialien mit steuerbarer Elastizität: Muschelfäden weisen den Weg zu künftigen Innovationen

26.02.2014

Über einen ungewöhnlichen Forschungserfolg berichtet eine Forschungsgruppe der Universität Bayreuth in der aktuellen Ausgabe von „Nature Communications“: Erstmals ist es gelungen, die Struktur und die Funktion eines Proteins aufzuklären, das in den Fäden von Miesmuscheln enthalten ist. Dieses Protein wurde als Ursache dafür identifiziert, dass der Faden der Miesmuschel unterschiedliche Grade der Elastizität aufweist und somit die Muschel in der Brandung optimal schützt. Die erfolgreiche Synthese und Analyse des Proteins im Labor eröffnet spannende Perspektiven für neuartige Biomaterialien, deren Elastizität sich mit hoher Genauigkeit steuern lässt.

Muschelbyssus gilt seit der Antike als ein wertvolles Material, das sich für sehr feine und ungewöhnlich haltbare Textilien hervorragend eignet. Das Interesse richtete sich dabei insbesondere auf die Edle Steckmuschel (Pinna nobilis). Ihre Fäden wurden zu einem Gewebe weiterverarbeitet, das vor allem wegen seines goldenen Schimmers sehr begehrt war. Ein besonders prominentes Beispiel für einen vermutlich auf der Basis von Steckmuschelfäden gefertigten ist der „Schleier von Mannopello“, der nahe der italienischen Ortschaft Mannopello in der Kirche Santuario del Volto Santo als Reliquie aufbewahrt wird.


Miesmuschel auf einem Stein. Mit ihren Byssusfäden kann sie sich an festen Gegenständen in der Brandung festsetzen.

Foto: Lehrstuhl für Biomaterialien, Universität Bayreuth; zur Veröffentlichung frei.

Muschelbyssus bezeichnet den Halteapparat aus dünnen beweglichen Fäden, mit denen sich Muscheln an Felsen, Holz oder anderen festen Gegenständen in der Brandung festsetzen. Sie wachsen aus dem Muschelfuß im Inneren der Muscheln und verfügen über besonders klebende „Füße“, die ein Wegrutschen ins offene Meer verhindern. Für die Byssusfäden der Miesmuschel ist es charakteristisch, dass ihre äußeren Enden viel steifer sind als die dem Muschelinneren nächstgelegenen, deutlich flexibleren Abschnitte. Dadurch sind die Fäden einerseits hinreichend fest, um den Strömungen des Wassers widerstehen zu können; andererseits sind sie zum Muschelinneren hin so flexibel, dass die weichen Muskeln der Muschel nicht verletzt werden. 

Unterschiedliche Grade der Elastizität im Muschelfaden:
Eine Bayreuther Forschergruppe identifiziert die Ursache

An der Universität Bayreuth hat eine Forschungsgruppe um Prof. Dr. Thomas Scheibel am Lehrstuhl für Biomaterialien und Prof. Dr. Clemens Steegborn am Lehrstuhl für Biochemie einen der Gründe für die unterschiedliche Elastizität in den Muschelfäden entdeckt. Es war bereits bekannt, dass jeder Byssusfaden einer Miesmuschel mehrere, nebeneinander in Längsrichtung verlaufende Stränge – die sogenannten Fibrillen – enthält. Die Fibrillen bestehen aus Proteinen, und zwar aus langen Kollagenmolekülen. In ihren winzigen Zwischenräumen und um die Stränge herum befinden sich hingegen andere Proteine. Diese bilden eine Matrix, in welche die Fibrillen eingebettet sind. Insofern handelt es sich bei den Muschelfäden um natürliche Kompositmaterialien, die eine ähnliche Grundstruktur haben wie moderne Verbundwerkstoffe mit ihren spezifischen, auf die jeweiligen Funktionen hin zugeschnittenen Eigenschaften.

Wie die Bayreuther Forscher jetzt herausgefunden haben, ist eine allmähliche Änderung der Bestandteile der Proteinmatrix im Verlauf des Muschelfadens für die unterschiedliche Elastizität verantwortlich. Ein Faden enthält in seinem äußeren Ende nicht die gleichen Proteine wie in dem flexibleren, dem Muschelinneren nähergelegenen – und deshalb als „proximal“ bezeichneten – Abschnitt. Es gibt sogar ein Protein, das nur im proximalen Abschnitt enthalten ist. Und genau dieses Protein ist die Ursache für die ausgeprägtere Flexibilität dieses Fadenabschnitts. Seine Moleküle sind hier in hoher Zahl als winzige Abstandshalter zwischen den einzelnen Fibrillen angeordnet und bilden so einen wesentlichen Bestandteil der Matrix.

Erstmalige Aufklärung der Struktur eines Byssus-Proteins:
Doppelte Bindung an die Kollagenstränge

In den Bayreuther Laboratorien wurde die molekulare Struktur dieses Proteins – des sogenannten „Protein Thread Matrix Protein 1 (PTMP1)“ – präzise bestimmt. „Damit ist es überhaupt zum ersten Mal gelungen, die molekulare Struktur eines Byssus-Proteins aufzuklären“, freut sich Prof. Scheibel. „Es handelt sich um eine Struktur, die wir in dieser Form bei Proteinen bisher noch nicht kannten.“, so Prof. Steegborn. Ein PTMP1-Molekül besteht nämlich aus drei Teilen: zwei Domänen, die einzeln genommen anderen Proteinen ähneln, und einem Verbindungsstück in der Mitte, das diese Domänen auf einzigartige Weise verknüpft. Das Molekül fungiert innerhalb des Muschelfadens genau dadurch als Abstandshalter, dass seine beiden Domänen eine passende Längsausrichtung erhalten und an denselben Kollagenstrang binden; vermutlich ähnlich wie ein Turner mit beiden Händen eine Reckstange fest umfasst. Viele PTMP1-Moleküle, die sich auf diese Weise an die Fibrillen „klammern“, sorgen im proximalen Abschnitt des Muschelfadens für feste Abstände zwischen den Fibrillen. Sie verleihen damit dem Faden eine höhere Elastizität.

Elastizität gezielt steuern:
Spannende Perspektiven für neue Biomaterialien

Die biotechnologische Herstellung der PTMP1-Moleküle eröffnet spannende Perspektiven für die Entwicklung neuartiger Biomaterialien. In der Chirurgie werden bereits heute Implantate eingesetzt, die hauptsächlich aus Kollagen bestehen. Es wäre ein entscheidender Vorteil für die Patienten, wenn es möglich wäre, in künstliche Gelenke oder in künstliches Hautgewebe graduelle Übergänge von elastischeren zu festeren Bereichen einzubauen. „Unsere bisherigen Forschungsergebnisse haben gezeigt: Biotechnologisch hergestellte Moleküle des Byssus-Proteins eignen sich als Abstandshalter, mit denen sich der Elastizitätsgrad von Biomaterialien gezielt steuern lässt“, erklärt Prof. Scheibel. Und nicht nur für medizinische Anwendungen, sondern beispielsweise auch für technische Textilien könnten sich die Proteine der Muschelfäden eines Tages als hochinteressante Bausteine erweisen.

Veröffentlichung:

Michael H. Suhre, Melanie Gertz, Clemens Steegborn und Thomas Scheibel,
Structural and Functional Features of a Collagen Binding Matrix Protein from the Mussel Byssus,
Nature Communications (2014)
DOI: 10.1038/ncomms4392

Ansprechpartner:

Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl Biomaterialien
Fakultät für Ingenieurwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise