Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Zahnräder treiben zelluläre Maschine zur Eiweißproduktion an

02.12.2010
Forschergruppe löst Grundproblem der Molekularbiologie

Wissenschaftlerinnen und Wissenschaftler der Charité – Universitätsmedizin Berlin haben in Zusammenarbeit mit Arbeitsgruppen an mehreren deutschen und US-amerikanischen Forschungsstandorten eine Schlüsselfrage bei der Herstellung von Eiweißen in der Zelle beantworten können. Eine mögliche Anwendung dieser Entdeckung sehen die Forscher, deren Arbeit im führenden Fachmagazin „Nature“* veröffentlicht wurde, in der Entwicklung von verbesserten Antibiotika.

Eiweiße entstehen im Zusammenspiel zweier Ribonukleinsäuren (RNS) in den Ribosomen, den „Eiweißfabriken“ der Zelle. Dabei wird der Bauplan der Eiweiße, die sogenannte Boten-RNS, wie ein Magnetfilm an der Nahtstelle zwischen den beiden Untereinheiten des Ribosoms abgelesen. Anschließend werden die Eiweiße kettenartig aus Aminosäuren aufgebaut. Leser der Boten-RNS und gleichzeitig Träger der Aminosäuren sind die Transfer-RNS. Diese transportieren die zum Aufbau der Eiweiße benötigten Aminosäuren solange zum Ort der Synthese, bis der Bauplan das Ende dieser Arbeit signalisiert. Damit ist der genetische Code, der in der Abfolge der Nukleinsäuren gespeichert ist, von der Nukleinsäurewelt in ein Produkt der Proteinwelt übersetzt worden. Das fertige Eiweiß verlässt dann über einen Tunnel das Ribosom. Unklar war bislang, wie die Boten-RNS und die Transfer-RNS durch das Ribosom bewegt werden.

Den Forschern und Forscherinnen aus Berlin, Marburg, München, Frankfurt/Main, Los Alamos, San Diego, Tallahassee und Houston gelang es nun zu dokumentieren, dass die Bewegung durch gegenläufige Drehungen der beiden Untereinheiten des Ribosoms zustande kommt. „Dabei wird Wärmeenergie genutzt. Diese sorgt für die interne Bewegung des Ribosoms, und dadurch wiederum werden Transfer- und Boten-RNS durch das Ribosom bewegt“, erklärt Prof. Christian Spahn, Direktor des Instituts für Medizinische Physik und Biophysik am Campus Charité Mitte, der die multinationale Forschungsgruppe koordinierte. Vergleichen lässt sich die Arbeit der Untereinheiten des Ribosoms mit einer mechanischen Ratsche. Eine Schlüsselstellung nimmt dabei die Kopfdomäne der kleinen Untereinheit ein, welche die Transfer-RNS wie auf einem Fließband herbeitransportiert. Moderiert wird der Vorgang von einem Helferprotein, das so zu sagen als dynamische Sperrklinke dient und die Bewegung in Zielrichtung gewährleistet.

Die Lösung dieses langjährigen Problems der Molekularbiologie wurde durch die strukturelle Untersuchung mittels dreidimensionaler Kryo-Elektronenmikroskopie ermöglicht. Bei dieser Methode werden die Ribosomen in flüssigem Ethan bei minus 192 Grad Celsius schockgefroren und mehrere 100.000 zweidimensionale Einzelbilder von Ribosomen nach Sortierung in zwei dreidimensionale Rekonstruktionen zurückprojiziert.

*Andreas H. Ratje et al.: Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. In: Nature, Volume 468, 02 Dezember 2010, 713–716. DOI: 10.1038/nature09547

Kontakt:
Prof. Christian Spahn
Institut für Medizinische Physik und Biophysik
Campus Charité Mitte
t: +49 30 450 524 131
christian.spahn[at]charite.de

Stefanie Winde | idw
Weitere Informationen:
http://www.charite.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops