Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Systeme - Leben ist Bewegung

29.04.2016

Bewegen sich mikroskopisch kleine Teilchen von selbst, oder werden sie bewegt? Eine von theoretischen Biophysikern entwickelte Methode erkennt den Unterschied und ermöglicht neue Einblicke in fundamentale Prozesse des Lebens.

Welche physikalischen und chemischen Eigenschaften unterscheiden lebendige Organismen von toter Materie? Diese Frage fasziniert Wissenschaftler seit jeher. Als ein grundsätzliches Schlüsselmerkmal für lebende Systeme gilt, dass sie sich, im Gegensatz zu toter Materie, nicht im thermodynamischen Gleichgewicht befinden.


Lebende Systeme wie die Flimmerhärchen von Epithelzellen verletzen das Prinzip des detaillierten Gleichgewichts. Ihre aktive Bewegung könnte theoretisch genutzt werden, um kleinmaßstäbige Maschinen anzutreiben. Bild: C. Hohmann (NIM), M. Leunissen (Dutch Data Design).

Das heißt, lebende Systeme wenden kontinuierlich Energie auf, etwa um Bewegung aus eigener Kraft möglich zu machen. Der LMU-Physiker Professor Chase Broedersz hat nun in Zusammenarbeit mit Wissenschaftlern der Universitäten Göttingen, Amsterdam, dem Massachussetts Institute of Technology und der Yale University eine Methode entwickelt, mit der man unterscheiden kann, welche Bewegungsabläufe in lebenden Zellen aktiv angetrieben werden und welche passiv durch Diffusion entstehen. Dies ermöglicht einen tieferen Einblick in fundamentale biologische Prozesse. Die Wissenschaftler stellen ihre neue Studie in der aktuellen Ausgabe des Fachmagazins Science vor.

„Faszinierenderweise ist Bewegung in der Welt mikroskopisch kleiner Teilchen nicht unbedingt ein Anzeichen für ein thermodynamisches Ungleichgewicht, also für einen aktiv angetriebenen Prozess, sondern sie kann auch durch eine Art thermisches Bombardement mit Atomen oder Molekülen aus der Umgebung zustande kommen“, sagt Broederzs:

Teilchen diffundieren aufgrund ihrer Wärmebewegung durch den Raum, kollidieren dabei ständig mit anderen Teilchen und stoßen sie zufällig in verschiedene Richtungen. Viele in Wirklichkeit aktive Prozesse in Zellen wiederum erwecken auf den ersten Anschein den Eindruck, zufällige Schwankungen zu sein. „Um die Zellfunktionen zu verstehen, ist es wichtig, beides voneinander unterscheiden zu können“, betont Broedersz.

Bewegungsanalyse mit Video

Die Forscher haben nun eine neue Methode entwickelt, mit der erstmals lebende Systeme auf der mikroskopischen Skala tatsächlich als lebend identifiziert werden können, und zwar anhand des Prinzips des detaillierten Gleichgewichts. Dieses Prinzip sagt aus, dass es für jeden Prozess einen genauso wahrscheinlichen Rückprozess gibt – Vor- und Rückwärtsbewegung etwa heben sich demnach insgesamt in etwa auf.

Trifft dies nicht zu, ist das System im Ungleichgewicht, wird also aktiv angetrieben. „Unsere neue Methode basiert auf mikroskopischen Videoaufnahmen, mit denen Bewegungen aufgenommen und daraufhin analysiert werden können, ob ein detailliertes Gleichgewicht vorliegt oder nicht“, sagt Broedersz.

Für ihre Studie analysierten die Wissenschaftler mit der neuen Methode die Bewegungsmuster von Flagellen der Grünalge Chlamydomonas reinhardtii und von Flimmerhärchen von Epithelzellen. Flagellen und Flimmerhärchen sind ähnlich aufgebaut, erfüllen aber verschiedene Funktionen: Die Flagellen treiben beim Schwimmen an, während Flimmerhärchen hauptsächlich als bewegliche Fühler dienen.

„Mithilfe unserer Aufnahmen konnten wir zeigen, dass sich sowohl die Flagellen als auch die Flimmerhärchen nicht einfach vor und zurück bewegen“, sagt Broedersz, „stattdessen führen sie einen ganzen Zyklus verschiedener Bewegungen durch, die aktiv angetrieben sind – und verletzen damit das Prinzip des detaillierten Gleichgewichts.“

Wichtig für die Wissenschaftler war, dass sich die Bewegungen ihrer Versuchssysteme unterscheiden: Flagellen schlagen periodisch, und es gibt nur wenig zufällige Variabilität dabei. Flimmerhärchen dagegen zeigen sehr viel mehr Unregelmäßigkeiten in ihrer Bewegung. Trotzdem konnten sie für beide Systeme eine Verletzung des detaillierten Gleichgewichts nachweisen.

„Unsere Arbeit ist nicht nur für die Biologie interessant, um Nichtgleichgewichte in biologischen Systemen zu erkennen und so einen tieferen Einblick in die komplexen Prozesse des Lebens zu bekommen“, ist Broedersz überzeugt, „sondern sie wird auch in der statistischen Mechanik und der Biophysik große Beachtung finden, da sie grundlegende Fragen aufgreift, wie sich molekulare Nichtgleichgewichtsprozesse manifestieren.“
Science 2016

Publikation:
Broken detailed balance at mesoscopic scales in active biological systems
Christopher Battle*, Chase P. Broedersz*, Nikta Fakhri*, Veikko F. Geyer, Jonathon Howard, Christoph F. Schmidt, and Fred C. MacKintosh
Science 2016
http://science.sciencemag.org/content/352/6285/604

Kontakt:
Prof. Dr. Chase Broedersz
Theoretische Statistische und Biologische Physik
Phone: +49 (0)89 2180-4514
C.Broedersz@lmu.de
http://www.theorie.physik.uni-muenchen.de/17ls_th_statisticphys_en/group_broeder...

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics