Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Schranken überwinden - Menschliche Gewebe im Reagenzglas «nachbauen»

21.03.2013
Wie bringt man Medikamente ins Gehirn? Welche Schadstoffe gelangen aus der Lunge ins Blut? Können Labormäuse durch zelluläre Modelle aus der Kulturschale ersetzt werden? Über diese Fragen diskutierten ForscherInnen und IndustriepartnerInnen aus der ganzen Schweiz und grenznahen Regionen an der Empa.

Mitte März trafen sich ForscherInnen und IndustriepartnerInnen aus dem Bereich der Lebenswissenschaften an der Empa, um über die Herausforderungen und Entwicklungen beim Modellieren menschlicher Gewebe in der Kulturschale zu diskutieren.

Organisiert wurde die Tagung unter dem Titel «in vitro Barrier Models: How Reliable and Clinically Relevant are these Systems?» von der Empa-Abteilung «Materials-Biology Interactions» unter der Leitung von Katharina Maniura und Peter Wick gemeinsam mit Ursula Graf-Hausner von der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), der Leiterin des Kompetenzzentrums «Tissue Engineering for Drug Developement» (TEDD), an dem auch die Empa beteiligt ist.

Schutzschilde des Körpers

Biologische Barrieren kommen in vielen Bereichen unseres Körpers vor. Meist handelt es sich dabei um spezielle Gewebeschichten, die chemische Stoffe nur sehr selektiv passieren lassen. Ein Beispiel ist die Haut, die uns vor Substanzen und Mikroorganismen aus der Umgebung schützt. Aber auch die Blut-Hirn-Schranke, die Plazenta sowie die Atemwege, Blutgefässe und der Verdauungstrakt bilden Schranken, die nur für bestimmte Substanzen in definierter Richtung durchlässig sind. Sie dienen dem Schutz des Körpers und einzelner Organe und sorgen dafür, dass die verschiedenen Kompartimente korrekt mit Nähr- und Hilfsstoffen versorgt werden.

Die Funktionsweise solcher Barrieren ist von grossem Interesse für Medizin, pharmazeutische und Kosmetikindustrie aber auch für die Toxikologie. Experimentelle Arbeiten in vivo – an Tiermodellen – sind allerdings aus ethischen Gründen zunehmend fragwürdig. Zudem sind Tiermodelle nicht immer ausreichend repräsentativ für den Menschen. So gewinnen humane in vitro-Modelle, also Zell- oder Gewebeproben im Reagenzglas bzw. in der Gewebekulturschale, immer mehr an Bedeutung.

Vielfältiger Nutzen
Die einfachsten in vitro-Modelle von biologischen Barrieren bestehen aus einer dünnen Membran, auf der menschliche Zellen einer bestimmten Sorte auf der einen und ein zweiter Zelltyp auf der anderen Seite wachsen. Solche Co-Kulturen können mit chemischen Substanzen oder Nanopartikeln konfrontiert werden. Die Durchlässigkeit der Barriere wird physikalisch durch eine Widerstandsmessung oder indirekt via Konzentrationsbestimmung einer Testsubstanz ermittelt. Mögliche Zellschädigungen werden unter dem Mikroskop sichtbar gemacht. Derartige Modelle können helfen, geeignete Inhaltsstoffe für Medikamente und Kosmetika zu identifizieren oder die potenzielle Schädlichkeit von Umweltverschmutzungen zu untersuchen.

Grosses Potenzial in der Medizin haben beispielsweise biokompatible Nanopartikel. So stellte die Empa-Forscherin Tina Bürki an der Tagung ein Projekt vor, das sich mit der Durchlässigkeit der Plazenta für Nanopartikel auseinandersetzt. Das Projekt soll mit Barrieremodellen den Mechanismus aufklären ob und wie Nanopartikel den Weg durch die Plazentabarriere finden. Solche Teilchen könnten in Zukunft die Behandlung der Mutter zulassen, ohne den Fötus zu belasten und vice versa. In vitro-Modelle mit menschlichen Zellen sind hier besonders wichtig:

Die Plazenta ist das Organ mit den grössten artenspezifischen Unterschieden; Tiermodelle sind für die menschliche Plazenta somit kaum repräsentativ. Vergleichbare Nanopartikel könnten auch Medikamente ins Gehirn transportieren, das dank der Blut-Hirn-Schranke für 98 Prozent aller Substanzen unzugänglich ist. Substanzen, die diese Schranke überwinden können, könnten die Behandlung von Erkrankungen wie Alzheimer oder Parkinson ermöglichen.

Nahe am Original

Obwohl die Möglichkeit, Gewebe ausserhalb des Körpers zu kultivieren, seit etwa 100 Jahren bekannt ist, stehen die WissenschaftlerInnen noch vor verschiedenen Herausforderungen. Biologische Barrieren bestehen in vivo im Gegensatz zu den Monokulturen in der Petrischale aus unterschiedlichen Zelltypen; die natürliche Blutzirkulation ist schwer nachzuahmen. Die grösste Schwierigkeit liegt aber bei der Beschaffung geeigneter Zellen; denn obwohl viele Zellkulturen kommerziell erhältlich sind, eignen sich die meisten nicht für Barrieremodelle. Bei solchen Kulturen handelt es sich in der Regel um immortalisierte Zelllinien –Tumorzellen, die sich praktisch unendlich teilen können und somit «unsterblich» sind. Diese Zellen sind meist nicht in der Lage, Verbindungen untereinander auszubilden von der Art und Anzahl wie man sie im Körper findet. Von derartigen interzellulären Verbindungen hängt aber die Funktionalität der biologischen Barrieren ab. Für die Entwicklung eines funktionellen Barrieremodells sind daher Primärzellen erforderlich – Zellen, die einem menschlichen Gewebe direkt entnommen werden, kultiviert werden und nach einer bestimmten Anzahl Teilungen sterben. Primäre Hautzellen stellen kein Problem dar, primäre Darm- oder Bronchialzellen sind dagegen eher schwierig zu besorgen. Trotz dieser Herausforderungen arbeiten ForscherInnen mit Nachdruck daran, in vitro-Modelle biologischer Barrieren weiterzuentwickeln, die dem lebendigen Vorbild – dem Menschen – möglichst entsprechen.

Rémy Nideröst | idw
Weitere Informationen:
http://www.empa.ch/plugin/template/empa/3/133922/---/l=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie