Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Schranken überwinden - Menschliche Gewebe im Reagenzglas «nachbauen»

21.03.2013
Wie bringt man Medikamente ins Gehirn? Welche Schadstoffe gelangen aus der Lunge ins Blut? Können Labormäuse durch zelluläre Modelle aus der Kulturschale ersetzt werden? Über diese Fragen diskutierten ForscherInnen und IndustriepartnerInnen aus der ganzen Schweiz und grenznahen Regionen an der Empa.

Mitte März trafen sich ForscherInnen und IndustriepartnerInnen aus dem Bereich der Lebenswissenschaften an der Empa, um über die Herausforderungen und Entwicklungen beim Modellieren menschlicher Gewebe in der Kulturschale zu diskutieren.

Organisiert wurde die Tagung unter dem Titel «in vitro Barrier Models: How Reliable and Clinically Relevant are these Systems?» von der Empa-Abteilung «Materials-Biology Interactions» unter der Leitung von Katharina Maniura und Peter Wick gemeinsam mit Ursula Graf-Hausner von der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), der Leiterin des Kompetenzzentrums «Tissue Engineering for Drug Developement» (TEDD), an dem auch die Empa beteiligt ist.

Schutzschilde des Körpers

Biologische Barrieren kommen in vielen Bereichen unseres Körpers vor. Meist handelt es sich dabei um spezielle Gewebeschichten, die chemische Stoffe nur sehr selektiv passieren lassen. Ein Beispiel ist die Haut, die uns vor Substanzen und Mikroorganismen aus der Umgebung schützt. Aber auch die Blut-Hirn-Schranke, die Plazenta sowie die Atemwege, Blutgefässe und der Verdauungstrakt bilden Schranken, die nur für bestimmte Substanzen in definierter Richtung durchlässig sind. Sie dienen dem Schutz des Körpers und einzelner Organe und sorgen dafür, dass die verschiedenen Kompartimente korrekt mit Nähr- und Hilfsstoffen versorgt werden.

Die Funktionsweise solcher Barrieren ist von grossem Interesse für Medizin, pharmazeutische und Kosmetikindustrie aber auch für die Toxikologie. Experimentelle Arbeiten in vivo – an Tiermodellen – sind allerdings aus ethischen Gründen zunehmend fragwürdig. Zudem sind Tiermodelle nicht immer ausreichend repräsentativ für den Menschen. So gewinnen humane in vitro-Modelle, also Zell- oder Gewebeproben im Reagenzglas bzw. in der Gewebekulturschale, immer mehr an Bedeutung.

Vielfältiger Nutzen
Die einfachsten in vitro-Modelle von biologischen Barrieren bestehen aus einer dünnen Membran, auf der menschliche Zellen einer bestimmten Sorte auf der einen und ein zweiter Zelltyp auf der anderen Seite wachsen. Solche Co-Kulturen können mit chemischen Substanzen oder Nanopartikeln konfrontiert werden. Die Durchlässigkeit der Barriere wird physikalisch durch eine Widerstandsmessung oder indirekt via Konzentrationsbestimmung einer Testsubstanz ermittelt. Mögliche Zellschädigungen werden unter dem Mikroskop sichtbar gemacht. Derartige Modelle können helfen, geeignete Inhaltsstoffe für Medikamente und Kosmetika zu identifizieren oder die potenzielle Schädlichkeit von Umweltverschmutzungen zu untersuchen.

Grosses Potenzial in der Medizin haben beispielsweise biokompatible Nanopartikel. So stellte die Empa-Forscherin Tina Bürki an der Tagung ein Projekt vor, das sich mit der Durchlässigkeit der Plazenta für Nanopartikel auseinandersetzt. Das Projekt soll mit Barrieremodellen den Mechanismus aufklären ob und wie Nanopartikel den Weg durch die Plazentabarriere finden. Solche Teilchen könnten in Zukunft die Behandlung der Mutter zulassen, ohne den Fötus zu belasten und vice versa. In vitro-Modelle mit menschlichen Zellen sind hier besonders wichtig:

Die Plazenta ist das Organ mit den grössten artenspezifischen Unterschieden; Tiermodelle sind für die menschliche Plazenta somit kaum repräsentativ. Vergleichbare Nanopartikel könnten auch Medikamente ins Gehirn transportieren, das dank der Blut-Hirn-Schranke für 98 Prozent aller Substanzen unzugänglich ist. Substanzen, die diese Schranke überwinden können, könnten die Behandlung von Erkrankungen wie Alzheimer oder Parkinson ermöglichen.

Nahe am Original

Obwohl die Möglichkeit, Gewebe ausserhalb des Körpers zu kultivieren, seit etwa 100 Jahren bekannt ist, stehen die WissenschaftlerInnen noch vor verschiedenen Herausforderungen. Biologische Barrieren bestehen in vivo im Gegensatz zu den Monokulturen in der Petrischale aus unterschiedlichen Zelltypen; die natürliche Blutzirkulation ist schwer nachzuahmen. Die grösste Schwierigkeit liegt aber bei der Beschaffung geeigneter Zellen; denn obwohl viele Zellkulturen kommerziell erhältlich sind, eignen sich die meisten nicht für Barrieremodelle. Bei solchen Kulturen handelt es sich in der Regel um immortalisierte Zelllinien –Tumorzellen, die sich praktisch unendlich teilen können und somit «unsterblich» sind. Diese Zellen sind meist nicht in der Lage, Verbindungen untereinander auszubilden von der Art und Anzahl wie man sie im Körper findet. Von derartigen interzellulären Verbindungen hängt aber die Funktionalität der biologischen Barrieren ab. Für die Entwicklung eines funktionellen Barrieremodells sind daher Primärzellen erforderlich – Zellen, die einem menschlichen Gewebe direkt entnommen werden, kultiviert werden und nach einer bestimmten Anzahl Teilungen sterben. Primäre Hautzellen stellen kein Problem dar, primäre Darm- oder Bronchialzellen sind dagegen eher schwierig zu besorgen. Trotz dieser Herausforderungen arbeiten ForscherInnen mit Nachdruck daran, in vitro-Modelle biologischer Barrieren weiterzuentwickeln, die dem lebendigen Vorbild – dem Menschen – möglichst entsprechen.

Rémy Nideröst | idw
Weitere Informationen:
http://www.empa.ch/plugin/template/empa/3/133922/---/l=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften