Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Schranken überwinden - Menschliche Gewebe im Reagenzglas «nachbauen»

21.03.2013
Wie bringt man Medikamente ins Gehirn? Welche Schadstoffe gelangen aus der Lunge ins Blut? Können Labormäuse durch zelluläre Modelle aus der Kulturschale ersetzt werden? Über diese Fragen diskutierten ForscherInnen und IndustriepartnerInnen aus der ganzen Schweiz und grenznahen Regionen an der Empa.

Mitte März trafen sich ForscherInnen und IndustriepartnerInnen aus dem Bereich der Lebenswissenschaften an der Empa, um über die Herausforderungen und Entwicklungen beim Modellieren menschlicher Gewebe in der Kulturschale zu diskutieren.

Organisiert wurde die Tagung unter dem Titel «in vitro Barrier Models: How Reliable and Clinically Relevant are these Systems?» von der Empa-Abteilung «Materials-Biology Interactions» unter der Leitung von Katharina Maniura und Peter Wick gemeinsam mit Ursula Graf-Hausner von der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW), der Leiterin des Kompetenzzentrums «Tissue Engineering for Drug Developement» (TEDD), an dem auch die Empa beteiligt ist.

Schutzschilde des Körpers

Biologische Barrieren kommen in vielen Bereichen unseres Körpers vor. Meist handelt es sich dabei um spezielle Gewebeschichten, die chemische Stoffe nur sehr selektiv passieren lassen. Ein Beispiel ist die Haut, die uns vor Substanzen und Mikroorganismen aus der Umgebung schützt. Aber auch die Blut-Hirn-Schranke, die Plazenta sowie die Atemwege, Blutgefässe und der Verdauungstrakt bilden Schranken, die nur für bestimmte Substanzen in definierter Richtung durchlässig sind. Sie dienen dem Schutz des Körpers und einzelner Organe und sorgen dafür, dass die verschiedenen Kompartimente korrekt mit Nähr- und Hilfsstoffen versorgt werden.

Die Funktionsweise solcher Barrieren ist von grossem Interesse für Medizin, pharmazeutische und Kosmetikindustrie aber auch für die Toxikologie. Experimentelle Arbeiten in vivo – an Tiermodellen – sind allerdings aus ethischen Gründen zunehmend fragwürdig. Zudem sind Tiermodelle nicht immer ausreichend repräsentativ für den Menschen. So gewinnen humane in vitro-Modelle, also Zell- oder Gewebeproben im Reagenzglas bzw. in der Gewebekulturschale, immer mehr an Bedeutung.

Vielfältiger Nutzen
Die einfachsten in vitro-Modelle von biologischen Barrieren bestehen aus einer dünnen Membran, auf der menschliche Zellen einer bestimmten Sorte auf der einen und ein zweiter Zelltyp auf der anderen Seite wachsen. Solche Co-Kulturen können mit chemischen Substanzen oder Nanopartikeln konfrontiert werden. Die Durchlässigkeit der Barriere wird physikalisch durch eine Widerstandsmessung oder indirekt via Konzentrationsbestimmung einer Testsubstanz ermittelt. Mögliche Zellschädigungen werden unter dem Mikroskop sichtbar gemacht. Derartige Modelle können helfen, geeignete Inhaltsstoffe für Medikamente und Kosmetika zu identifizieren oder die potenzielle Schädlichkeit von Umweltverschmutzungen zu untersuchen.

Grosses Potenzial in der Medizin haben beispielsweise biokompatible Nanopartikel. So stellte die Empa-Forscherin Tina Bürki an der Tagung ein Projekt vor, das sich mit der Durchlässigkeit der Plazenta für Nanopartikel auseinandersetzt. Das Projekt soll mit Barrieremodellen den Mechanismus aufklären ob und wie Nanopartikel den Weg durch die Plazentabarriere finden. Solche Teilchen könnten in Zukunft die Behandlung der Mutter zulassen, ohne den Fötus zu belasten und vice versa. In vitro-Modelle mit menschlichen Zellen sind hier besonders wichtig:

Die Plazenta ist das Organ mit den grössten artenspezifischen Unterschieden; Tiermodelle sind für die menschliche Plazenta somit kaum repräsentativ. Vergleichbare Nanopartikel könnten auch Medikamente ins Gehirn transportieren, das dank der Blut-Hirn-Schranke für 98 Prozent aller Substanzen unzugänglich ist. Substanzen, die diese Schranke überwinden können, könnten die Behandlung von Erkrankungen wie Alzheimer oder Parkinson ermöglichen.

Nahe am Original

Obwohl die Möglichkeit, Gewebe ausserhalb des Körpers zu kultivieren, seit etwa 100 Jahren bekannt ist, stehen die WissenschaftlerInnen noch vor verschiedenen Herausforderungen. Biologische Barrieren bestehen in vivo im Gegensatz zu den Monokulturen in der Petrischale aus unterschiedlichen Zelltypen; die natürliche Blutzirkulation ist schwer nachzuahmen. Die grösste Schwierigkeit liegt aber bei der Beschaffung geeigneter Zellen; denn obwohl viele Zellkulturen kommerziell erhältlich sind, eignen sich die meisten nicht für Barrieremodelle. Bei solchen Kulturen handelt es sich in der Regel um immortalisierte Zelllinien –Tumorzellen, die sich praktisch unendlich teilen können und somit «unsterblich» sind. Diese Zellen sind meist nicht in der Lage, Verbindungen untereinander auszubilden von der Art und Anzahl wie man sie im Körper findet. Von derartigen interzellulären Verbindungen hängt aber die Funktionalität der biologischen Barrieren ab. Für die Entwicklung eines funktionellen Barrieremodells sind daher Primärzellen erforderlich – Zellen, die einem menschlichen Gewebe direkt entnommen werden, kultiviert werden und nach einer bestimmten Anzahl Teilungen sterben. Primäre Hautzellen stellen kein Problem dar, primäre Darm- oder Bronchialzellen sind dagegen eher schwierig zu besorgen. Trotz dieser Herausforderungen arbeiten ForscherInnen mit Nachdruck daran, in vitro-Modelle biologischer Barrieren weiterzuentwickeln, die dem lebendigen Vorbild – dem Menschen – möglichst entsprechen.

Rémy Nideröst | idw
Weitere Informationen:
http://www.empa.ch/plugin/template/empa/3/133922/---/l=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Poröse Salze für Brennstoffzellen
24.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics