Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioinformatiker der Uni Halle entdecken bisher unbekanntes Muster im Humangenom

23.01.2014
Mit Hilfe von Hochleistungsrechnern ist es Forschern um den Bioinformatiker Prof. Dr. Ivo Große vom Institut für Informatik der Martin-Luther-Universität Halle-Wittenberg (MLU) gelungen, ein bisher unentdecktes Muster der Protein-DNA-Interaktion zu identifizieren.

Sie liefern mit der Beschreibung des Bindungsmusters des Proteins CTCF einen wichtigen Beitrag zur Vertiefung des Verständnisses der Genregulation im menschlichen Organismus.

CTCF ist ein zentrales Regulationsprotein, das vielfältige Funktionen aufweist, und dessen Fehlfunktion unter anderem Krebs auslösen kann. Die Forschungsergebnisse sind seit heute im Fachjournal „PLoS ONE“ veröffentlicht.

Der Begriff Genregulation bezeichnet die Steuerung der Aktivität und Inaktivität von Genen. Sie ist ein fundamentaler, aber von der Wissenschaft noch längst nicht abschließend verstandener Prozess. Die Genregulation bewirkt, dass die rund 25.000 Gene des Menschen selektiv an- oder abgeschaltet werden können. „Der Grund, warum wir so aussehen, wie wir aussehen, und warum wir so funktionieren, wie wir funktionieren, ist, dass die richtigen Gene im richtigen Gewebe zum richtigen Zeitpunkt an- bzw. abgeschaltet werden“, erklärt Prof. Dr. Ivo Große.

Auf molekularer Ebene sind zur Genregulation bestimmte Proteine nötig - die sogenannten Transkriptionsfaktoren - die die DNA an bestimmten Stellen - den sogenannten Transkriptionsfaktorbindungsstellen - binden. Das Protein CTCF ist ein solcher wesentlicher Transkriptionsfaktor. Er spielt u.a. eine fundamentale Rolle bei der Entstehung verschiedener Krebserkrankungen. „Die Aufklärung, an welche Bindungsstellen der Transkriptionsfaktor CTCF in verschiedenen Geweben und zu verschiedenen Zeitpunkten bindet, ist daher von hoher biologischer und medizinischer Relevanz“, erklärt Große.

Da die exakte Bestimmung von Bindungsstellen eines gegebenen Transkriptionsfaktors durch Experimente im Labor sehr aufwändig und teuer ist, kommt computerbasierten Vorhersagemethoden eine hohe Bedeutung zu. Das internationale Forscherteam um Ivo Große hat somit nicht nur erkannt, dass die Natur komplexere Bindungsmuster verwendet, als Wissenschaftler weltweit bisher angenommen haben. Ihnen gelang es auch, mit einem neuen Bioinformatikverfahren dieses Bindungsmuster zu erkennen und zu beschreiben.

Während bisherige Verfahren ein vergleichsweise einfaches Modell der Protein-DNA-Bindung verwendeten, wurde in dieser Arbeit nun ein realitätsnäheres Modell, welches statistische Abhängigkeiten zwischen Nukleotiden innerhalb der Bindungsstellen erkennen kann, verwendet. „Wir konnten zeigen, dass dieses Modell die komplexen Bindungsmuster des Transkriptionsfaktors CTCF besser erkennt und sich dadurch die CTCF-Bindungsstellen in verschiedenen Geweben besser bestimmen lassen“, erläutert Ralf Eggeling, Doktorand in der Gruppe von Große und Erstautor des Artikels.

Neben der MLU an der Forschungsarbeit beteiligte Institutionen sind das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung in Gatersleben, das Julius-Kühn-Institut Quedlinburg, das Deutsche Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig sowie die University of Southern California in Los Angeles.

Ermöglicht wurde diese Arbeit der halleschen Bioinformatiker durch einen High-Performance-Computing-Cluster der Universität Halle, einen Supercomputer, der riesige Datenmengen verarbeiten kann. „Da komplexere Modelle üblicherweise höhere Rechenleistungen erfordern, wären unsere Studien ohne die entsprechende Rechentechnik nicht zu realisieren gewesen“, sagt Ralf Eggeling.

Mit Hilfe dieses Clusters hatten die Wissenschaftler um Ivo Große und Marcel Quint vom Leibniz-Institut für Pflanzenbiochemie Halle bereits mehrere Milliarden von Gensequenzen verglichen, um dem Sanduhr-Modell der Embryonalentwicklung im Pflanzenreich auf die Spur zu kommen. Dessen Entdeckung hatte vor eineinhalb Jahren weltweit für großes Aufsehen gesorgt

(http://www.nature.com/nature/journal/v490/n7418/full/nature11394.html)

Die neue Arbeit zum bislang unentdeckten DNA-Bindungsmuster des Proteins CTCF ist im Fachjournal „PLoS ONE“ veröffentlicht: "On the value of intra-motif dependencies of human insulator protein CTCF" (DOI: 10.1371/journal.pone.0085629)

Weitere Informationen:

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085629
- Link zum Artikel

Manuela Bank-Zillmann | idw
Weitere Informationen:
http://www.uni-halle.de
http://www.nature.com/nature/journal/v490/n7418/full/nature11394.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie

Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte

17.01.2018 | Physik Astronomie