Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioinformatik: Genetische Schaltzentralen leichter erkennen

27.09.2012
Alle Erbinformationen sind in der DNA festgelegt - aber nicht immer sind alle Gene aktiv. Welche Informationen umgesetzt werden, bestimmen sogenannte regulatorische Sequenzen. Ein neues Verfahren hilft, diese genetischen Schaltzentralen aufzuspüren.
Das menschliche Genom umfasst etwa 20 000 Gene - ungefähr so viele, wie auch der winzige Fadenwurm Caenorhabditis elegans besitzt. Nicht die Anzahl der Gene macht nämlich die Komplexität eines Organismus aus, sondern die Regulierung ihrer Expression, also ihrer Aktivität. Gesteuert wird diese durch oft benachbarte regulatorische DNA/RNA-Sequenzen. Entscheidend daran beteiligt sind Regulationsfaktoren, die Informationen übermitteln, indem sie an regulatorische Sequenzen binden.

„Um die Steuerung der Genexpression besser zu verstehen, müssen wir untersuchen, wie und wann Regulationsfaktoren binden“ sagt der LMU-Informatiker Johannes Söding, der nun mit seinem Team ein neues computerbasiertes Verfahren dafür entwickelt hat. Die meisten modernen Methoden zur Untersuchung der Genregulierung liefern als Ergebnis eine Liste von Sequenzen, die durch einen oder mehrere spezifisch bindende Faktoren kontrolliert werden. Die jeweiligen Bindungspräferenzen der Faktoren können dabei mithilfe sogenannter Positionsspezifischer Gewichtsmatritzen (PWMs) beschrieben werden.
Muster im Sequenzrauschen

Allerdings sind PWMs für die computergestützte Entdeckung unbekannter Bindepräferenzen in Sequenzdaten problematisch, weil es unendlich viele von ihnen gibt, und weil die Berechnung ihrer statistischen Signifikanz sehr zeitaufwändig ist. Södings Gruppe ist es gelungen, diese Limitierung zu überwinden und eine Methode zu entwickeln, mit der die statistische Signifikanz der PWMs direkt optimiert werden kann. Dieser Ansatz zahlt sich aus: „Unsere Methode zeigt im Vergleich zu herkömmlichen Verfahren eine deutlich größere Sensitivität, um auch schwache Muster zu erkennen. Zudem sind die errechneten PWMs genauer“, erklärt Söding.

Die Wissenschaftler untersuchten mit ihrer Methode sogenannte humane Core-Promotor-Sequenzen, also kurze DNA-Abschnitte, an denen die Abschrift der DNA in Boten-RNA beginnt. Tatsächlich gelang es ihnen, eine Reihe von bislang unbekannten Motiven zu identifizieren, die vermutlich wichtige regulatorische Eigenschaften beinhalten. „Wir hoffen, mit unserer Methode das Verständnis der Genregulation durch spezifische DNA- und RNA-Bindungsfaktoren entscheidend voranzubringen“, sagt Söding. (Genome Research, September 2012)

Publication:
Hartmann, H., Guthöhrlein, E. W., Siebert, M., Luehr, S., and Söding, J. (2012)
P-value based regulatory motif discovery using positional weight matrices.
Genome Res., September 2012
doi: 10.1101/gr.139881.112
Contact:
Dr. Johannes Söding
Group Leader in Computational Biology
Gene Center Munich and Department of Biochemistry
phone: +49-89-2180 76734
Fax: +49-89-2180 76797
Email: soeding@genzentrum.lmu.de
http://www.soeding.genzentrum.lmu.de/

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics