Biogene Insektizide entschlüsselt: Wissenschaftler aus Bochum und Freiburg berichten in Science

Der genaue Wirkmechanismus von Photorhabdus luminescens war bis her ungeklärt. Gemeinsam mit Kollegen aus Freiburg konnte Prof. em. Dr. Hans Georg Mannherz (Medizinische Fakultät der RUB und Max-Planck-Institut für Molekulare Physiologie, Dortmund) ihn jetzt entschlüsseln: Maßgeblich beteiligt sind bestimmte Untereinheiten des Toxinkomplexes, die essentielle Abwehrreaktionen von Immunzellen hemmen.

Der gleiche Mechanismus wirkt auch bei einigen für Menschen gefährlichen Keimen wie dem Erreger von Lungen- und Beulenpest. Die Forscher berichten in der aktuellen Ausgabe des Magazins SCIENCE.

Würmer bringen Bakterien ans Ziel

Photorhabdus luminescens lebt symbiotisch mit Nematoden. Die winzigen Würmer dringen durch natürliche Öffnungen in Insektenlarven ein, wo sie die Bakterien gewissermaßen wieder „herauswürgen“. Bakterielle Toxine, die von dem Licht-emittierenden Keim produziert werden, töten die Insektenlarven und schaffen dadurch ein großes Nahrungsreservoir für die Vermehrung von Nematoden und Bakterien.

Zwei Untereinheiten des Toxinkomplexes sind biologisch aktiv

Photorhabdus luminescens produziert verschiedene Toxine, die große Toxin-Komplexe (Tc-Proteine) bilden. Der biologisch aktive Komplex besteht dabei aus den drei Komponenten TcA, TcB und TcC. Bis heute ist weder eine enzymatische Aktivität noch ein Wirkungsmechanismus für diese Toxine beschrieben worden. Die Freiburger Forscher um Prof. Dr. Dr. Klaus Aktories und Prof. Dr. Gudula Schmidt untersuchten zusammen mit Forschern der Firma Dow AgroSciences (USA) und Prof. em. Dr. Mannherz die Wirkungen der Toxine auf Insekten- und Säugetierzellen. Dabei konnten sie zeigen, dass die biologische Aktivität in den TcC-Komponenten TccC3 und TccC5 lokalisiert ist. Die beiden Toxinkomponenten sind Enzyme, die essentielle Abwehrfunktionen von Immunzellen hemmen, zum Beispiel die Phagozytose von Bakterien.

Toxine wirken auf zwei Wegen

Die Toxine wirken dabei auf zwei unterschiedlichen Wegen auf die Zielzellen der Insektenlarven. TccC3 modifiziert das Zytoskelettprotein Aktin (ADP-ribosylierung) derart, dass es sich der Kontrolle des Regulatorproteins Thymosin ß4 entzieht. Dies führt zu einer starken Verkettung (Polymerisation) des Aktins. Das zweite Toxin, TccC5, verändert sog. Rho-Proteine, die Schalterproteine für die Regulation des Aktinzytoskeletts sind. Normalerweise werden diese Regulatoren in der Zelle an- und wieder ausgeschaltet. TccC5 modifiziert den Schalter, wodurch das Ausschalten blockiert wird. Das permanent aktive Rho-Protein fördert wiederum die Polymerisation von Aktin. Beide Toxine zusammen führen zu einer starken Aggregation bis Verklumpung des Aktinzytoskeletts, die mit der normalen zellulären Funktion oder Immunabwehr unvereinbar ist. Damit die Toxine TccC3 und TccC5 in die Insektenzellen gelangen können, wird TcA gebraucht, das Poren in Wirtszellen bildet, durch die wahrscheinlich die Toxine ins Zellinnere geschleust werden.

Entscheidende Erkenntnisse für das Verständnis von Tc-Proteinen

Tc-Proteine wurden auch in humanpathogenen Bakterien wie z.B. Yersinia pseudotuberculosis und Yersinia pestis identifiziert. „Daher ist die Aufklärung des molekularen Mechanismus der prototypischen Tc-Proteine von entscheidender Bedeutung für das Verständnis anderer Tc-Proteine aus insektiziden und humanpathogenen Bakterien“, erklärt Prof. Mannherz.

Titelaufnahme

Alexander E. Lang, Gudula Schmidt, Andreas Schlosser, Timothy D. Hey, Ignacio M. Larrinua, Joel J. Sheets, Hans G. Mannherz und Klaus Aktories: „Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering“. In: Science 26 February 2010 327: 1139-1142 [DOI: 10.1126/science.1184557]

Weitere Informationen

Prof. em. Dr. Hans Georg Mannherz, Abteilung für Anatomie und Embryologie der Ruhr-Universität Bochum und Abteilung für Physikalische Biochemie des Max-Planck-Instituts für Molekulare Physiologie, Dortmund, E-Mail: hans.g.mannherz@rub.de

Redaktion: Meike Drießen

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer