Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biogene Insektizide entschlüsselt: Wissenschaftler aus Bochum und Freiburg berichten in Science

26.02.2010
Nematoden, winzige Würmer, dienen dem Keim Photorhabdus luminescens als Transportmittel, um in Insektenlarven zu gelangen. Da er die Larven tötet, werden die Würmer mit den Bakterien als Insektizid eingesetzt.

Der genaue Wirkmechanismus von Photorhabdus luminescens war bis her ungeklärt. Gemeinsam mit Kollegen aus Freiburg konnte Prof. em. Dr. Hans Georg Mannherz (Medizinische Fakultät der RUB und Max-Planck-Institut für Molekulare Physiologie, Dortmund) ihn jetzt entschlüsseln: Maßgeblich beteiligt sind bestimmte Untereinheiten des Toxinkomplexes, die essentielle Abwehrreaktionen von Immunzellen hemmen.

Der gleiche Mechanismus wirkt auch bei einigen für Menschen gefährlichen Keimen wie dem Erreger von Lungen- und Beulenpest. Die Forscher berichten in der aktuellen Ausgabe des Magazins SCIENCE.

Würmer bringen Bakterien ans Ziel

Photorhabdus luminescens lebt symbiotisch mit Nematoden. Die winzigen Würmer dringen durch natürliche Öffnungen in Insektenlarven ein, wo sie die Bakterien gewissermaßen wieder "herauswürgen". Bakterielle Toxine, die von dem Licht-emittierenden Keim produziert werden, töten die Insektenlarven und schaffen dadurch ein großes Nahrungsreservoir für die Vermehrung von Nematoden und Bakterien.

Zwei Untereinheiten des Toxinkomplexes sind biologisch aktiv

Photorhabdus luminescens produziert verschiedene Toxine, die große Toxin-Komplexe (Tc-Proteine) bilden. Der biologisch aktive Komplex besteht dabei aus den drei Komponenten TcA, TcB und TcC. Bis heute ist weder eine enzymatische Aktivität noch ein Wirkungsmechanismus für diese Toxine beschrieben worden. Die Freiburger Forscher um Prof. Dr. Dr. Klaus Aktories und Prof. Dr. Gudula Schmidt untersuchten zusammen mit Forschern der Firma Dow AgroSciences (USA) und Prof. em. Dr. Mannherz die Wirkungen der Toxine auf Insekten- und Säugetierzellen. Dabei konnten sie zeigen, dass die biologische Aktivität in den TcC-Komponenten TccC3 und TccC5 lokalisiert ist. Die beiden Toxinkomponenten sind Enzyme, die essentielle Abwehrfunktionen von Immunzellen hemmen, zum Beispiel die Phagozytose von Bakterien.

Toxine wirken auf zwei Wegen

Die Toxine wirken dabei auf zwei unterschiedlichen Wegen auf die Zielzellen der Insektenlarven. TccC3 modifiziert das Zytoskelettprotein Aktin (ADP-ribosylierung) derart, dass es sich der Kontrolle des Regulatorproteins Thymosin ß4 entzieht. Dies führt zu einer starken Verkettung (Polymerisation) des Aktins. Das zweite Toxin, TccC5, verändert sog. Rho-Proteine, die Schalterproteine für die Regulation des Aktinzytoskeletts sind. Normalerweise werden diese Regulatoren in der Zelle an- und wieder ausgeschaltet. TccC5 modifiziert den Schalter, wodurch das Ausschalten blockiert wird. Das permanent aktive Rho-Protein fördert wiederum die Polymerisation von Aktin. Beide Toxine zusammen führen zu einer starken Aggregation bis Verklumpung des Aktinzytoskeletts, die mit der normalen zellulären Funktion oder Immunabwehr unvereinbar ist. Damit die Toxine TccC3 und TccC5 in die Insektenzellen gelangen können, wird TcA gebraucht, das Poren in Wirtszellen bildet, durch die wahrscheinlich die Toxine ins Zellinnere geschleust werden.

Entscheidende Erkenntnisse für das Verständnis von Tc-Proteinen

Tc-Proteine wurden auch in humanpathogenen Bakterien wie z.B. Yersinia pseudotuberculosis und Yersinia pestis identifiziert. "Daher ist die Aufklärung des molekularen Mechanismus der prototypischen Tc-Proteine von entscheidender Bedeutung für das Verständnis anderer Tc-Proteine aus insektiziden und humanpathogenen Bakterien", erklärt Prof. Mannherz.

Titelaufnahme

Alexander E. Lang, Gudula Schmidt, Andreas Schlosser, Timothy D. Hey, Ignacio M. Larrinua, Joel J. Sheets, Hans G. Mannherz und Klaus Aktories: "Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering". In: Science 26 February 2010 327: 1139-1142 [DOI: 10.1126/science.1184557]

Weitere Informationen

Prof. em. Dr. Hans Georg Mannherz, Abteilung für Anatomie und Embryologie der Ruhr-Universität Bochum und Abteilung für Physikalische Biochemie des Max-Planck-Instituts für Molekulare Physiologie, Dortmund, E-Mail: hans.g.mannherz@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten