Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biofabrikation von künstlichen Blutgefäßen mit Laserlicht

28.08.2015

Mit der Entwicklung eines künstlichen, durchbluteten dreilagigen Hautmodells stößt das EU-Forschungsprojekt ArtiVasc 3D in eine neue Dimension vor. Ein interdisziplinäres Forscherteam unter Führung des Fraunhofer-Instituts für Lasertechnik ILT entwickelte ein 3D-Druckverfahren zu Herstellung von künstlichen verzweigten Blutgefäßen aus neuartigen Materialen. Damit schufen sie die Grundlagen, um ein Vollhautmodel in weit größeren Schichtdicken als bisher zu kultivieren. Auf der Abschlussveranstaltung am Fraunhofer ILT vom 28. bis 29. Oktober 2015 stellen die ArtiVasc 3D-Forscher ihre Ergebnisse detailliert vor.

Bisher ist es nur möglich, die oberen Schichten der Haut, Epidermis und Dermis mit einer Gesamtdicke von bis zu 200 Mikrometern außerhalb des menschlichen Körpers zu kultivieren. Zu einem vollständigen Hautsystem gehört aber auch die mehrere Millimeter dicke Subcutis.


Künstliches, verzweigtes Blutgefäß.

© Fraunhofer ILT, Aachen


Makroskopische Aufnahme eines siebenlagigen Fettgewebeäquivalents.

© Fraunhofer IGB, Stuttgart

Will man die Subcutis mitzüchten, sind versorgende Blutgefäße zwingend notwendig. Denn für Zellverbände von über 200 Mikrometer Schichtdicke gilt: ohne Blut kein Leben. Genau hier setzt das europäische Forschungsprojekt ArtiVasc 3D an, das sich zum Ziel gesetzt hat, durch die Entwicklung künstlicher Blutgefäße die in vitro Kultivierung deutlich komplexerer Gewebe zu ermöglichen.

Das richtige Material in der richtigen Form

Eine der größten Herausforderungen im Projekt ArtiVasc 3D war es, das richtige Material für die Herstellung der künstlichen Blutgefäße zu entwickeln. Die richtigen mechanischen Eigenschaften und volle Biokompatibilität sowie die Prozessierbarkeit sind Grundvoraussetzungen für den Einsatz im menschlichen Körper. Denn die künstlichen Gefäße müssen von Endothelzellen und Pericyten besiedelt werden können.

Um diese Eigenschaften zu erzeugen, kombinierten die Fraunhofer-Wissenschaftler die Freiform-Verfahren Inkjet-Printing und Stereo-Lithographie miteinander. Mit diesem Kombi-Verfahren gelang es den Forschern, eine sehr feine Auflösung zum Aufbau verzweigter, poröser Blutgefäße mit Schichtdicken von etwa 20 µm zu erreichen. Die Daten für den Aufbau dieser verzweigten Strukturen wurden mit Hilfe mathematischer Simulationen erarbeitet.

Sie sollen die Voraussetzungen für den Aufbau von verzweigter Strukturen schaffen, die eine gleichmäßige Blutversorgung erlauben. Die Verwendung des im Projekt entwickelten akrylatbasierten synthetischen Polymers ermöglicht den Aufbau dieser optimierten Gefäße mit einem Porendurchmesser der Größenordnung von hundert Mikrometern. Gegenüber herkömmlichen Verfahren bietet das ArtiVasc 3D-Verfahren erstmalig die Rahmenbedingungen, kontrolliert verzweigte und biokompatible Gefäße in dieser Dimension herzustellen.

Vorstoß in die dritte Dimension

Die Ergebnisse von ArtiVasc 3D sind zukunftsweisend. Es wurde eine Toolbox entwickelt, die flexibel auf unterschiedlichste Materialien, Geometrien und Größen eingehen kann. Diese Ergebnisse können als Vorstufe betrachtet werden zu einer vollautomatisierten Prozesskette für die Herstellung künstlicher Blutgefäße, die sich auch in bestehende Linien integrieren lässt. Weiteres Highlight des Projekts ist die erfolgreiche Züchtung von Fettgewebe in einem neuartigen Bioreaktor. Die Kombination des Fettgewebes mit einem bestehenden Hautmodell erlaubt die Herstellung eines Vollhautmodells mit einer Dicke von bis zu 12 Millimetern.

Die erfolgreiche Eroberung der dritten Dimension muss nicht auf Haut beschränkt bleiben. Im ArtiVasc 3D-Projekt wurden die Grundlagen für das dreidimensionale Tissue Engineering geschaffen. Das Prinzip der Durchblutung mittels artifizieller Blutgefäße könnte in Zukunft auch den Aufbau größerer Strukturen wie ganzen Organen ermöglichen. Für in vitro gezüchtete Vollhaut gäbe es vielfältige Anwendungen: schnelle Hilfe bei großflächigen Hautverletzungen wie Verbrennungen oder nach Tumorresektionen sowie als Ersatzmodell zur Vermeidung von Tierversuchen in der Pharmaindustrie.

Erfolg nur im Verbund

Nicht nur die Blutgefäße als solche, sondern auch die Technologie, die für eine vollautomatisierte Züchtung des gesamten Hautsystems erforderlich ist, sollte innerhalb der vierjährigen Projektlaufzeit entwickelt werden. Diese äußerst ambitionierte Herausforderung konnte nur im interdisziplinären Verbund erreicht werden. Europaweit haben sich dafür zwanzig Partner der Fachrichtungen Biomaterial-Entwicklung, Tissue Engineering, Freiform-Verfahren, Automation und Simulation unter der Führung des Fraunhofer ILT zusammengeschlossen.

Die ArtiVasc 3D-Projektpartner

- Aalto University
- Albert-Ludwigs Universität Freiburg
- AO Research Institute Davos
- International Management Services ARTTIC
- Beiersdorf AG
- Berufsgenossenschaftliche Kliniken Bergmannsheil Klinikum der Ruhr-Universität Fraunhofer-Institut für Angewandte Polymerforschung IAP
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
- Fraunhofer-Institut für Lasertechnik ILT
- Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
- Fraunhofer-Institut für Werkstoffmechanik IWM
- INNOVENT e.V. Technologieentwicklung Jena
- KMS Automation GmbH
- Medizinische Universität Wien
- Unitechnologies SA
- University of East Anglia
- Loughborough University
- Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik
- University of Salerno, Department of Industrial Engineering
- Vimecon GmbH

Die Forschungsarbeiten im Projekt ArtiVasc 3D werden gemäß der Finanzhilfevereinbarung Nr. 263416 im Zuge des Siebten Rahmenprogramms der Europäischen Union (RP7/2007-2013) gefördert.

Erfahren Sie mehr über die Ergebnisse des AtriVasc 3D-Projekts!

Am 28. und 29. Oktober 2015 stellen die ArtiVasc 3D-Forscher ihre Ergebnisse detailliert auf dem Abschluss-Workshop am Fraunhofer ILT in Aachen vor. Wir würden uns freuen, Sie hierzu begrüßen zu dürfen! Bitte melden Sie sich an unter: www.artivasc.eu

Kontakt

Dr. rer. nat. Nadine Nottrodt
Gruppe Biotechnik und Lasertherapie
Telefon +49 241 8906-605
nadine.nottrodt@ilt.fraunhofer.de

Dipl.-Phys. Sascha Engelhardt
Gruppe Biotechnik und Lasertherapie
Telefon +49 241 8906-605
sascha.engelhardt@ilt.fraunhofer.de

Dr. Arnold Gillner
Leiter Kompetenzfeld Abtragen und Fügen
Telefon +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.artivasc.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie