Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biofabrikation von künstlichen Blutgefäßen mit Laserlicht

28.08.2015

Mit der Entwicklung eines künstlichen, durchbluteten dreilagigen Hautmodells stößt das EU-Forschungsprojekt ArtiVasc 3D in eine neue Dimension vor. Ein interdisziplinäres Forscherteam unter Führung des Fraunhofer-Instituts für Lasertechnik ILT entwickelte ein 3D-Druckverfahren zu Herstellung von künstlichen verzweigten Blutgefäßen aus neuartigen Materialen. Damit schufen sie die Grundlagen, um ein Vollhautmodel in weit größeren Schichtdicken als bisher zu kultivieren. Auf der Abschlussveranstaltung am Fraunhofer ILT vom 28. bis 29. Oktober 2015 stellen die ArtiVasc 3D-Forscher ihre Ergebnisse detailliert vor.

Bisher ist es nur möglich, die oberen Schichten der Haut, Epidermis und Dermis mit einer Gesamtdicke von bis zu 200 Mikrometern außerhalb des menschlichen Körpers zu kultivieren. Zu einem vollständigen Hautsystem gehört aber auch die mehrere Millimeter dicke Subcutis.


Künstliches, verzweigtes Blutgefäß.

© Fraunhofer ILT, Aachen


Makroskopische Aufnahme eines siebenlagigen Fettgewebeäquivalents.

© Fraunhofer IGB, Stuttgart

Will man die Subcutis mitzüchten, sind versorgende Blutgefäße zwingend notwendig. Denn für Zellverbände von über 200 Mikrometer Schichtdicke gilt: ohne Blut kein Leben. Genau hier setzt das europäische Forschungsprojekt ArtiVasc 3D an, das sich zum Ziel gesetzt hat, durch die Entwicklung künstlicher Blutgefäße die in vitro Kultivierung deutlich komplexerer Gewebe zu ermöglichen.

Das richtige Material in der richtigen Form

Eine der größten Herausforderungen im Projekt ArtiVasc 3D war es, das richtige Material für die Herstellung der künstlichen Blutgefäße zu entwickeln. Die richtigen mechanischen Eigenschaften und volle Biokompatibilität sowie die Prozessierbarkeit sind Grundvoraussetzungen für den Einsatz im menschlichen Körper. Denn die künstlichen Gefäße müssen von Endothelzellen und Pericyten besiedelt werden können.

Um diese Eigenschaften zu erzeugen, kombinierten die Fraunhofer-Wissenschaftler die Freiform-Verfahren Inkjet-Printing und Stereo-Lithographie miteinander. Mit diesem Kombi-Verfahren gelang es den Forschern, eine sehr feine Auflösung zum Aufbau verzweigter, poröser Blutgefäße mit Schichtdicken von etwa 20 µm zu erreichen. Die Daten für den Aufbau dieser verzweigten Strukturen wurden mit Hilfe mathematischer Simulationen erarbeitet.

Sie sollen die Voraussetzungen für den Aufbau von verzweigter Strukturen schaffen, die eine gleichmäßige Blutversorgung erlauben. Die Verwendung des im Projekt entwickelten akrylatbasierten synthetischen Polymers ermöglicht den Aufbau dieser optimierten Gefäße mit einem Porendurchmesser der Größenordnung von hundert Mikrometern. Gegenüber herkömmlichen Verfahren bietet das ArtiVasc 3D-Verfahren erstmalig die Rahmenbedingungen, kontrolliert verzweigte und biokompatible Gefäße in dieser Dimension herzustellen.

Vorstoß in die dritte Dimension

Die Ergebnisse von ArtiVasc 3D sind zukunftsweisend. Es wurde eine Toolbox entwickelt, die flexibel auf unterschiedlichste Materialien, Geometrien und Größen eingehen kann. Diese Ergebnisse können als Vorstufe betrachtet werden zu einer vollautomatisierten Prozesskette für die Herstellung künstlicher Blutgefäße, die sich auch in bestehende Linien integrieren lässt. Weiteres Highlight des Projekts ist die erfolgreiche Züchtung von Fettgewebe in einem neuartigen Bioreaktor. Die Kombination des Fettgewebes mit einem bestehenden Hautmodell erlaubt die Herstellung eines Vollhautmodells mit einer Dicke von bis zu 12 Millimetern.

Die erfolgreiche Eroberung der dritten Dimension muss nicht auf Haut beschränkt bleiben. Im ArtiVasc 3D-Projekt wurden die Grundlagen für das dreidimensionale Tissue Engineering geschaffen. Das Prinzip der Durchblutung mittels artifizieller Blutgefäße könnte in Zukunft auch den Aufbau größerer Strukturen wie ganzen Organen ermöglichen. Für in vitro gezüchtete Vollhaut gäbe es vielfältige Anwendungen: schnelle Hilfe bei großflächigen Hautverletzungen wie Verbrennungen oder nach Tumorresektionen sowie als Ersatzmodell zur Vermeidung von Tierversuchen in der Pharmaindustrie.

Erfolg nur im Verbund

Nicht nur die Blutgefäße als solche, sondern auch die Technologie, die für eine vollautomatisierte Züchtung des gesamten Hautsystems erforderlich ist, sollte innerhalb der vierjährigen Projektlaufzeit entwickelt werden. Diese äußerst ambitionierte Herausforderung konnte nur im interdisziplinären Verbund erreicht werden. Europaweit haben sich dafür zwanzig Partner der Fachrichtungen Biomaterial-Entwicklung, Tissue Engineering, Freiform-Verfahren, Automation und Simulation unter der Führung des Fraunhofer ILT zusammengeschlossen.

Die ArtiVasc 3D-Projektpartner

- Aalto University
- Albert-Ludwigs Universität Freiburg
- AO Research Institute Davos
- International Management Services ARTTIC
- Beiersdorf AG
- Berufsgenossenschaftliche Kliniken Bergmannsheil Klinikum der Ruhr-Universität Fraunhofer-Institut für Angewandte Polymerforschung IAP
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
- Fraunhofer-Institut für Lasertechnik ILT
- Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
- Fraunhofer-Institut für Werkstoffmechanik IWM
- INNOVENT e.V. Technologieentwicklung Jena
- KMS Automation GmbH
- Medizinische Universität Wien
- Unitechnologies SA
- University of East Anglia
- Loughborough University
- Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik
- University of Salerno, Department of Industrial Engineering
- Vimecon GmbH

Die Forschungsarbeiten im Projekt ArtiVasc 3D werden gemäß der Finanzhilfevereinbarung Nr. 263416 im Zuge des Siebten Rahmenprogramms der Europäischen Union (RP7/2007-2013) gefördert.

Erfahren Sie mehr über die Ergebnisse des AtriVasc 3D-Projekts!

Am 28. und 29. Oktober 2015 stellen die ArtiVasc 3D-Forscher ihre Ergebnisse detailliert auf dem Abschluss-Workshop am Fraunhofer ILT in Aachen vor. Wir würden uns freuen, Sie hierzu begrüßen zu dürfen! Bitte melden Sie sich an unter: www.artivasc.eu

Kontakt

Dr. rer. nat. Nadine Nottrodt
Gruppe Biotechnik und Lasertherapie
Telefon +49 241 8906-605
nadine.nottrodt@ilt.fraunhofer.de

Dipl.-Phys. Sascha Engelhardt
Gruppe Biotechnik und Lasertherapie
Telefon +49 241 8906-605
sascha.engelhardt@ilt.fraunhofer.de

Dr. Arnold Gillner
Leiter Kompetenzfeld Abtragen und Fügen
Telefon +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Weitere Informationen:

http://www.artivasc.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie