Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioelektrische Chemieanlagen könnten klassische Petrolchemie ablösen / Beispiel Lysinproduktion

09.03.2015

Die „Elektrifizierung“ der Weißen Biotechnologie ist kein grüner Traum, sondern eine Alternative zur Petrolchemie mit realistischem ökonomischen Potenzial. Im Vergleich mit der zuckerbasierten Bioproduktion seien bioelektrochemische Prozesse bereits jetzt zum Teil wettbewerbsfähig. Die nächste Generation dieser Chemieanlagen könnte daher nicht nur wesentlich umweltfreundlicher, sondern auch kosteneffizienter werden. Zu diesem Ergebnis kommen Wissenschaftler des UFZ und der University of Queensland, die erstmals die ökonomischen Chancen dieses neuen Zweiges der Biotechnologie untersucht und die Ergebnisse im Fachblatt „ChemSusChem“ veröffentlicht haben.

Im Gegensatz zur Energie- und Kraftstoffbranche, die zum Großteil durch staatliche Ziele geprägt ist, wird die Chemieindustrie ausschließlich von Marktmechanismen dominiert. Firmen und Kunden sind bisher größtenteils nicht bereit, einen Mehrpreis für „grüne“ Produkte zu bezahlen.


Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie

Foto: André Künzelmann/UFZ

Dies hat zur Folge, dass die Produktion von bio-basierten Chemikalien gegenüber der traditionellen erdölbasierten Produktion billiger sein oder einen Zusatznutzen haben muss. Bei gleichen Kosten dagegen setzen Firmen meist auf die bewährten Produktionswege und -verfahren. Trotzdem wird der Anteil der „grünen“ an der gesamten Chemieproduktion bis 2025 deutlich steigen, so die Prognosen verschiedenster Institutionen.

Dieser große Markt steht im Mittelpunkt der sogenannten Weißen Biotechnologie, die biotechnologische Methoden für industrielle Produktionsverfahren einsetzt und von der roten (Medizin) sowie grünen Biotechnologie (Pflanzen) abgegrenzt wird.

Treibstoffe und Chemikalien können bioelektrochemisch produziert werden. Dazu werden mikrobielle Synthesen durch elektrischen Strom angetrieben und gesteuert, was neue Möglichkeiten eröffnet. Trotzdem ist diese „Elektrifizierung“ der weißen Biotechnologie nicht leicht zu erreichen, da biochemische und elektrochemische Reaktionen unterschiedliche Prozessbedingungen bevorzugen.

Deshalb besteht noch ein erheblicher Bedarf an systematischer Forschung und Entwicklung, um diese Technologie für den Markt verfügbar zu machen, wie die Forscher in ihrer Arbeit darlegen.

Um die ökonomischen Chancen dieses relativ neuen Ansatzes abzuschätzen, betrachteten die Forscher einen etablierten Prozess zur Biosynthese und verglichen diesen mit der entsprechenden Bioelektrosynthese. Als Modellprozess wählten sie die Lysinproduktion, welche konventionell auf Zuckern oder komplexen Substraten, wie beispielsweise auf Saccharose aus Zuckerrüben oder Melasse basiert. Lysin ist ein Massenprodukt, von dem 2013 über 1,9 Millionen Tonnen hergestellt wurden.

Diese Aminosäure wird als Zusatz in Futtermitteln oder in Schmerzmitteln verwendet und erzielte Preise zwischen 1,6 und 2,4 US-Dollar pro Kilogramm. Die Forscher verglichen nun die Substratkosten für eine solche konventionelle Biosynthese (auf Saccharose basierend) mit der Bioelektrosynthese, bei welcher neben Saccharose auch elektrische Energie als Substrat eingesetzt wird.

Durch unterschiedliche Rohstoffpreise für Saccharose in der EU und in den USA ergaben sich für beide Szenarien unterschiedliche Kosten: Unter Annahme aktueller Marktpreise würde die bioelektrochemische Produktion von 30 Tonnen Lysin, was einem typischen Produktionsansatz entspricht, demnach in der EU etwa 21.500 US-Dollar und in den USA etwa 16.700 US-Dollar kosten. Gegenüber der klassischen Biosynthese ergäben sich durch die neue, effizientere Produktionsmethode Kosteneinsparungen von 8,4% in der EU und 18,0% in den USA.

„Dabei werden potentielle Ersparnisse durch den geringeren Bedarf an Produktreinigung aufgrund der verringerten Nebenproduktproduktion noch nicht einmal berücksichtigt“ ergänzt Dr. Jens Krömer von der Universität Queensland. „Wenn man spekuliert und dies auf einen Zeithorizont von zehn Jahren umrechnet, macht dies bei einer Anlage mit einer Jahresproduktion von 50.000 Tonnen immerhin 30 Millionen US-Dollar in der EU bzw. 50 Millionen US-Dollar in den USA aus. Dabei müssen allerdings noch die zusätzlichen Investitionskosten, welche bisher nicht abgeschätzt werden können, abgezogen werden. Nichtsdestotrotz zeigt dieses Beispiel, dass die bioelektrische Produktion von Chemikalien also auch ökonomisch interessant werden kann“, erklärt Dr. Falk Harnisch vom UFZ.

Die Bioelektrotechnologie ist also ein Thema mit weitreichender Bedeutung. Das Fachjournal „ChemSusChem“, das sich der Chemie und der Nachhaltigkeit verschrieben hat, widmet daher dieser Publikation auch seine Titelseite. Diese zeigt das (von einer Mitautorin gezeichnete) Bild eines Globus mit zwei Seiten – der grünen Synthese und der Erdölchemie. Dieser positive Ausblick soll ausreichend dazu motivieren, die Forschung der Bioelektrotechnologie weiter zu fördern. Tilo Arnhold

Publikationen:
Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B. and Krömer, J. O. (2014): Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production. ChemSusChem. doi: 10.1002/cssc.201402736 http://dx.doi.org/10.1002/cssc.201402736
Die Untersuchungen wurden gefördert durch das Bundesministerium für Bildung und Forschung (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"), die Helmholtz-Gemeinschaft (Nachwuchsgruppe & Forschungsprogramm Erneuerbare Energien) sowie die University of Queensland.

Als deutschsprachige Übersicht zum Thema:
Agler-Rosenbaum, M., Schröder, U. und Harnisch, F. (2013): Mikroben unter Strom. Biologie in unserer Zeit, 43: 96–103. doi: 10.1002/biuz.201310502 http://dx.doi.org/10.1002/biuz.201310502
Die Arbeit wurden gefördert durch die Deutsche Forschungsgemeinschaft (DFG-Exzellenzcluster „Tailor-Made Fuels from Biomass“), über das Zukunftskonzept II der RWTH Aachen, das Bundesministerium für Bildung und Forschung (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+") und die Helmholtz-Gemeinschaft (Nachwuchsgruppe & Forschungsprogramm Erneuerbare Energien).

Weitere Informationen:
Dr. Falk Harnisch
Leiter der Arbeitsgruppe Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie
im Department Umweltmikrobiologie am Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: +49-(0)341-235-1337
http://www.ufz.de/index.php?de=31006
und
Dr. Luis Filipe Morgado Rosa (auf Englisch & Portugiesisch)
Arbeitsgruppe Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie
im Department Umweltmikrobiologie am Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: +49-(0)341-235-1373
http://www.ufz.de/index.php?en=31835
und
Dr. Jens Kroemer,
University of Queensland
Phone: 07 3346 3222
e-mail: j.kromer@uq.edu.au.

oder über
Tilo Arnhold, Susanne Hufe (UFZ-Pressestelle)
Telefon: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?de=640

Weiterführende Links:
Arbeitsgruppe „Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie“ am UFZ:
http://www.ufz.de/index.php?de=31005
Forschung zur mikrobiellen Bioelektrotechnologie wird in Leipzig etabliert (Pressemitteilung vom 13. September 2012):
http://www.ufz.de/index.php?de=30828
Initiative "Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"
http://www.bmbf.de/de/biotechnologie2020plus.php
Was ist Biotechnologie?
https://www.biotechnologie.de/BIO/Navigation/DE/Hintergrund/basiswissen,did=7976...

Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg mehr als 1.100 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.
http://www.ufz.de/

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit 35.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,8 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?de=33620

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics