Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioelektrische Chemieanlagen könnten klassische Petrolchemie ablösen / Beispiel Lysinproduktion

09.03.2015

Die „Elektrifizierung“ der Weißen Biotechnologie ist kein grüner Traum, sondern eine Alternative zur Petrolchemie mit realistischem ökonomischen Potenzial. Im Vergleich mit der zuckerbasierten Bioproduktion seien bioelektrochemische Prozesse bereits jetzt zum Teil wettbewerbsfähig. Die nächste Generation dieser Chemieanlagen könnte daher nicht nur wesentlich umweltfreundlicher, sondern auch kosteneffizienter werden. Zu diesem Ergebnis kommen Wissenschaftler des UFZ und der University of Queensland, die erstmals die ökonomischen Chancen dieses neuen Zweiges der Biotechnologie untersucht und die Ergebnisse im Fachblatt „ChemSusChem“ veröffentlicht haben.

Im Gegensatz zur Energie- und Kraftstoffbranche, die zum Großteil durch staatliche Ziele geprägt ist, wird die Chemieindustrie ausschließlich von Marktmechanismen dominiert. Firmen und Kunden sind bisher größtenteils nicht bereit, einen Mehrpreis für „grüne“ Produkte zu bezahlen.


Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie

Foto: André Künzelmann/UFZ

Dies hat zur Folge, dass die Produktion von bio-basierten Chemikalien gegenüber der traditionellen erdölbasierten Produktion billiger sein oder einen Zusatznutzen haben muss. Bei gleichen Kosten dagegen setzen Firmen meist auf die bewährten Produktionswege und -verfahren. Trotzdem wird der Anteil der „grünen“ an der gesamten Chemieproduktion bis 2025 deutlich steigen, so die Prognosen verschiedenster Institutionen.

Dieser große Markt steht im Mittelpunkt der sogenannten Weißen Biotechnologie, die biotechnologische Methoden für industrielle Produktionsverfahren einsetzt und von der roten (Medizin) sowie grünen Biotechnologie (Pflanzen) abgegrenzt wird.

Treibstoffe und Chemikalien können bioelektrochemisch produziert werden. Dazu werden mikrobielle Synthesen durch elektrischen Strom angetrieben und gesteuert, was neue Möglichkeiten eröffnet. Trotzdem ist diese „Elektrifizierung“ der weißen Biotechnologie nicht leicht zu erreichen, da biochemische und elektrochemische Reaktionen unterschiedliche Prozessbedingungen bevorzugen.

Deshalb besteht noch ein erheblicher Bedarf an systematischer Forschung und Entwicklung, um diese Technologie für den Markt verfügbar zu machen, wie die Forscher in ihrer Arbeit darlegen.

Um die ökonomischen Chancen dieses relativ neuen Ansatzes abzuschätzen, betrachteten die Forscher einen etablierten Prozess zur Biosynthese und verglichen diesen mit der entsprechenden Bioelektrosynthese. Als Modellprozess wählten sie die Lysinproduktion, welche konventionell auf Zuckern oder komplexen Substraten, wie beispielsweise auf Saccharose aus Zuckerrüben oder Melasse basiert. Lysin ist ein Massenprodukt, von dem 2013 über 1,9 Millionen Tonnen hergestellt wurden.

Diese Aminosäure wird als Zusatz in Futtermitteln oder in Schmerzmitteln verwendet und erzielte Preise zwischen 1,6 und 2,4 US-Dollar pro Kilogramm. Die Forscher verglichen nun die Substratkosten für eine solche konventionelle Biosynthese (auf Saccharose basierend) mit der Bioelektrosynthese, bei welcher neben Saccharose auch elektrische Energie als Substrat eingesetzt wird.

Durch unterschiedliche Rohstoffpreise für Saccharose in der EU und in den USA ergaben sich für beide Szenarien unterschiedliche Kosten: Unter Annahme aktueller Marktpreise würde die bioelektrochemische Produktion von 30 Tonnen Lysin, was einem typischen Produktionsansatz entspricht, demnach in der EU etwa 21.500 US-Dollar und in den USA etwa 16.700 US-Dollar kosten. Gegenüber der klassischen Biosynthese ergäben sich durch die neue, effizientere Produktionsmethode Kosteneinsparungen von 8,4% in der EU und 18,0% in den USA.

„Dabei werden potentielle Ersparnisse durch den geringeren Bedarf an Produktreinigung aufgrund der verringerten Nebenproduktproduktion noch nicht einmal berücksichtigt“ ergänzt Dr. Jens Krömer von der Universität Queensland. „Wenn man spekuliert und dies auf einen Zeithorizont von zehn Jahren umrechnet, macht dies bei einer Anlage mit einer Jahresproduktion von 50.000 Tonnen immerhin 30 Millionen US-Dollar in der EU bzw. 50 Millionen US-Dollar in den USA aus. Dabei müssen allerdings noch die zusätzlichen Investitionskosten, welche bisher nicht abgeschätzt werden können, abgezogen werden. Nichtsdestotrotz zeigt dieses Beispiel, dass die bioelektrische Produktion von Chemikalien also auch ökonomisch interessant werden kann“, erklärt Dr. Falk Harnisch vom UFZ.

Die Bioelektrotechnologie ist also ein Thema mit weitreichender Bedeutung. Das Fachjournal „ChemSusChem“, das sich der Chemie und der Nachhaltigkeit verschrieben hat, widmet daher dieser Publikation auch seine Titelseite. Diese zeigt das (von einer Mitautorin gezeichnete) Bild eines Globus mit zwei Seiten – der grünen Synthese und der Erdölchemie. Dieser positive Ausblick soll ausreichend dazu motivieren, die Forschung der Bioelektrotechnologie weiter zu fördern. Tilo Arnhold

Publikationen:
Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B. and Krömer, J. O. (2014): Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production. ChemSusChem. doi: 10.1002/cssc.201402736 http://dx.doi.org/10.1002/cssc.201402736
Die Untersuchungen wurden gefördert durch das Bundesministerium für Bildung und Forschung (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"), die Helmholtz-Gemeinschaft (Nachwuchsgruppe & Forschungsprogramm Erneuerbare Energien) sowie die University of Queensland.

Als deutschsprachige Übersicht zum Thema:
Agler-Rosenbaum, M., Schröder, U. und Harnisch, F. (2013): Mikroben unter Strom. Biologie in unserer Zeit, 43: 96–103. doi: 10.1002/biuz.201310502 http://dx.doi.org/10.1002/biuz.201310502
Die Arbeit wurden gefördert durch die Deutsche Forschungsgemeinschaft (DFG-Exzellenzcluster „Tailor-Made Fuels from Biomass“), über das Zukunftskonzept II der RWTH Aachen, das Bundesministerium für Bildung und Forschung (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+") und die Helmholtz-Gemeinschaft (Nachwuchsgruppe & Forschungsprogramm Erneuerbare Energien).

Weitere Informationen:
Dr. Falk Harnisch
Leiter der Arbeitsgruppe Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie
im Department Umweltmikrobiologie am Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: +49-(0)341-235-1337
http://www.ufz.de/index.php?de=31006
und
Dr. Luis Filipe Morgado Rosa (auf Englisch & Portugiesisch)
Arbeitsgruppe Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie
im Department Umweltmikrobiologie am Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: +49-(0)341-235-1373
http://www.ufz.de/index.php?en=31835
und
Dr. Jens Kroemer,
University of Queensland
Phone: 07 3346 3222
e-mail: j.kromer@uq.edu.au.

oder über
Tilo Arnhold, Susanne Hufe (UFZ-Pressestelle)
Telefon: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?de=640

Weiterführende Links:
Arbeitsgruppe „Mikrobielle Bioelektrokatalyse & Bioelektrotechnologie“ am UFZ:
http://www.ufz.de/index.php?de=31005
Forschung zur mikrobiellen Bioelektrotechnologie wird in Leipzig etabliert (Pressemitteilung vom 13. September 2012):
http://www.ufz.de/index.php?de=30828
Initiative "Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"
http://www.bmbf.de/de/biotechnologie2020plus.php
Was ist Biotechnologie?
https://www.biotechnologie.de/BIO/Navigation/DE/Hintergrund/basiswissen,did=7976...

Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg mehr als 1.100 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.
http://www.ufz.de/

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit 35.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,8 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?de=33620

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten