Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biochemiker der TU München verlängern Wirkzeit pharmakologischer Substanzen: Proteine in XL

17.09.2009
Viele Biopharmazeutika bestehen aus kleinen Proteinen, die rasch wieder aus dem Körper ausgeschieden werden. Wissenschaftler der Technischen Universität München (TUM) verbinden die kleinen Proteine mit einer Art molekularem Ballon, der sich aufbläht und dadurch die Halbwertszeit der Proteine im Körper verlängert. Die TUM-Ausgründung XL-protein GmbH hat begonnen, die neue Technologie mit Blockbuster-Potenzial weiterzuentwickeln.
Wer an chronischer Hepatitis B leidet, wird häufig mit dem Gewebshormon Interferon behandelt. Das Problem: Interferon ist ein sehr kleines Protein, deshalb wird es bereits nach kurzer Zeit wieder über die Niere ausgeschieden. Für den Patienten bedeutet das alle zwei Tage eine hoch dosierte Spritze, damit die Wirkung der Substanz nicht vorzeitig nachlässt.

Deutlich länger bleibt Interferon dagegen im Körper, wenn es chemisch mit einem synthetischen PEG-Molekül (Polyethylenglycol) gekoppelt ist. PEG ist eine Art Knäuel aus einem langkettigen Polymerfaden, das Wasser aufsaugt und sich dadurch aufbläht. Auf diese Weise wird das PEG-Molekül so groß, dass es nicht durch die feinen Poren der Niere passt – das angekoppelte Interferon wird daher länger im Blutkreislauf gehalten, und der Patient muss nur eine Spritze alle ein bis zwei Wochen erhalten.

Wissenschaftler der TU München um Prof. Arne Skerra vom Lehrstuhl für Biologische Chemie am Wissenschaftszentrum Weihenstephan haben jetzt mithilfe der Gentechnik einen Aminosäurefaden entwickelt, der sich ähnlich wie PEG verknäult und Wasser anlagert. Im Gegensatz zu vielen PEG-Verbindungen besteht jedoch nicht die Gefahr, dass sich dieses Anhängsel im Körper anreichert. Vielmehr wird es – über einen längeren Zeitraum – ausgeschieden oder biologisch abgebaut. Denn der Aminosäurefaden ist aus lediglich drei der 20 natürlich vorkommenden Aminosäuren zusammengesetzt:
Prolin, Alanin und Serin, kurz PAS.

Der Proteinwirkstoff Interferon, der ja seinerseits aus Aminosäuren aufgebaut ist, lässt sich dadurch auch auf einfache Weise in "PASylierter"
Form gewinnen. In ersten Versuchen mit Tieren stellten die TUM-Wissenschaftler fest, dass ein PASyliertes Interferon eine um den Faktor 60 verlängerte Halbwertszeit im Blut aufweist, so dass damit tatsächlich verlängerte Dosierungsintervalle ermöglicht werden.

Ein weiterer Vorteil liegt in der vereinfachten biotechnologischen Herstellung, denn die DNA-Stücke, die die Informationen für den PAS-Aminosäurefaden beziehungsweise das Interferon tragen, werden einfach aneinandergehängt und dann zum Beispiel in ein Bakterium eingepflanzt. Das Bakterium produziert das PASylierte Interferon gleichsam am Stück, so dass anders als bei einer chemischen Kopplung von PEG mit Interferon wesentlich weniger Herstellungsschritte nötig sind. Skerra: „Dadurch werden die Produktionskosten erheblich sinken.“

PASylieren lassen sich prinzipiell alle kleinen Proteine, die bereits als Medikamente eingesetzt oder bei Pharmafirmen derzeit entwickelt werden, wie zum Beispiel Wachstumsfaktoren oder funktionelle Antikörperfragmente: ein riesiger Markt für die neue Technologie. Prof. Skerra hat deshalb zusammen mit seinen Mitarbeitern die Gründung einer neuen Biotech-Firma vorangetrieben, der XL-protein GmbH, die im Frühjahr ihre Geschäftstätigkeit aufgenommen hat. „Unsere Technologie hat das Potenzial dazu, Blockbuster-Medikamente einer neuen Generation hervorzubringen“, ist der TUM-Biochemiker überzeugt. Mehrere der neuen Wirkstoffe seien bereits im Stadium der fortgeschrittenen präklinischen Entwicklung.

Kontakt:
Technische Universität München
Lehrstuhl für Biologische Chemie
Prof. Dr. Arne Skerra
85350 Freising-Weihenstephan
Tel.: 08161 / 71- 4350
E-Mail: skerra@wzw.tum.de

Prof. Dr. Arne Skerra | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://www.wzw.tum.de/bc

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics