Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biochemiker lösen Rätsel in der Evolution von Enzymen

14.02.2012
Ein interessantes Detail für den Aufbau und die Funktion von Enzymen fand Prof. Dr. Mario Mörl vom Institut für Biochemie der Universität Leipzig.

Ausgehend von seinen Untersuchungen an tRNA-Nukleotidyltransferasen - Enzymen, die aus einzelnen Bausteinen (Nukleotiden) Ribonucleinsäuren (in diesem Fall transfer-RNAs) aufbauen bzw. vervollständigen können - ist das Team um Biochemiker Mörl einen wichtigen Schritt vorangekommen. In der aktuellen Ausgabe von PNAS berichtet es über den Aufbau und die Funktion eines sogenannten A-addierenden Enzyms - ein Enzym, das ganz gezielt einen einzelnen Nukleotid-Baustein (Adenosinmonophosphat oder kurz "A") an tRNAs heftet. Erstmals erklären sie, warum diese Enzyme trotz ihrer Ähnlichkeit zu komplexeren Nukleotidyltransferasen nur diese eingeschränkte Reaktion katalysieren können.

tRNA-Nukleotidyltransferasen heften drei Nukleotidbausteine (zwei Cytidinmonophosphate, kurz "C", und ein Adenosinmonophosphat, "A") in der Reihenfolge C-C-A an tRNA-Moleküle und generieren dabei die Position, an der tRNAs mit Aminosäuren beladen werden - eine essentielle Voraussetzung bei der Synthese von Proteinen in der Zelle.

Zunächst war es ein interessantes Phänomen, das Professor Mörl so beschreibt: "Einige dieser Enzyme können nicht die komplette Sequenz C-C-A synthetisieren, sondern sind auf den Einbau der beiden C-Positionen (CC-addierende Enzyme) bzw. der A-Position (A-addierende Enzyme) spezialisiert.

Beide Enzymtypen sehen jedoch auf den ersten Blick gleich aus, sodass nicht klar war, woher diese Spezialisierung kommt." In einer vorangegangenen PNAS-Veröffentlichung (2008) konnten die Forscher bereits klären, weshalb die CC-addierenden Enzyme kein A einbauen können. Bei den A-addierenden Enzymen war dies jedoch deutlich schwieriger: Strukturell gesehen besitzen diese Enzyme alle Komponenten, die nötig sind, um eine komplette C-C-A-Sequenz an tRNAs zu heften.

Aktuell ging es somit um die Frage: "Wenn diese Enzyme alle Elemente zur C-C-A-Addition tragen, warum können sie dann lediglich einen einzelnen A-Rest einbauen?". Die Leipziger Biochemiker entfernten dazu sukzessive immer größere Teile von A-addierenden Enzymen und testeten die entstandenen verkürzten Varianten auf ihre Aktivität. Dabei zeigte sich, dass eine kleine Region dafür verantwortlich ist, dass die A-addierenden Enzyme eine eingeschränkte Funktionalität besitzen. Entfernte man diese Region, so konnten die Enzyme tatsächlich komplette C-C-A-Sequenzen synthetisieren. Die inhibitorische Wirkung dieser Region scheint darin zu liegen, dass über sie reguliert wird, welche tRNAs vom Enzym erkannt werden - nämlich nur noch tRNAs, die bereits die Sequenz C-C erhalten haben und denen somit nur noch das letzte A fehlt. Der Bereich, in dem sich diese Region befindet, ist in der Evolution überraschend variabel und kaum konserviert. Die erhaltenen Daten weisen darauf hin, dass diese Region offenbar von der Natur genutzt wurde, um im Lauf der Evolution die Funktionalität dieser Enzyme zu verändern und sie mit neuen Eigenschaften auszustatten.

Tretbar, S., Neuenfeldt, A., Betat, H., and Mörl, M. (2011) An inhibitory C-terminal Region dictates the Specificity of A-adding Enzymes.

Proc. Natl. Acad. Sci. USA 108, No. 52, 21040-21045.

Editing-Reaktionen als Enzymaktivitäten

Eine weitere aktuelle Veröffentlichung aus der gleichen Arbeitsgruppe beschäftigt sich ebenfalls mit der Entstehung von neuen Enzymfunktionen. Manche RNAs müssen nach ihrer Synthese an einzelnen Positionen noch verändert bzw. durch den Einbau zusätzlicher Nukleotid-Bausteine korrigiert werden. Diese Reaktionen bezeichnet man als "RNA-Editing".

Wie beim klassischen Henne - Ei - Problem stellt sich hierbei die interessante Frage, wie diese Editing-Ereignisse entstanden sind. Einer gängigen Hypothese nach müssen zunächst Nukleotid-einbauende Enzyme vorhanden gewesen sein, die über ein breites Substratspektrum verfügten und somit Bausteine in viele verschiedene RNA-Moleküle einbauten. Erst dann konnten durch Mutationen im Erbgut RNAs entstehen, die durch diese Enzyme editiert und damit wieder korrigiert wurden. Durch verschiedene Experimente an Hefe wies das Team um Professor Mario Mörl nun ein derartiges substrat-tolerantes Enzym nach, das über die beschriebenen Eigenschaften verfügt.

Bislang war diese Enzymaktivität dafür bekannt, eine Qualitätskontrolle an RNAs durchzuführen, wobei es fehlerhafte und unvollständige RNAs durch das Anheften von Nukleotiden zum Abbau markierte. Mit dieser Funktion ist es aber offensichtlich auch in der Lage, unvollständige RNAs zu komplettieren und damit eine Editing-Funktion zu übernehmen. Damit gelang es der Arbeitsgruppe, die Theorie zur Evolution von RNA-Editing Ereignissen experimentell zu belegen und ein entsprechendes Kandidaten-Enzym für Editing-Reaktionen zu identifizieren, das tatsächlich alle bisher postulierten Eigenschaften besitzt.

Molecular Biology and Evolution. 2012.

Anne Alexander

Weitere Informationen:
Prof. Dr. Mario Mörl
Telefon: +49 341 97-36911
E-Mail: moerl@uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de
http://www.biochemie.uni-leipzig.de/agmoerl

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie