Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biochemiker lösen Rätsel in der Evolution von Enzymen

14.02.2012
Ein interessantes Detail für den Aufbau und die Funktion von Enzymen fand Prof. Dr. Mario Mörl vom Institut für Biochemie der Universität Leipzig.

Ausgehend von seinen Untersuchungen an tRNA-Nukleotidyltransferasen - Enzymen, die aus einzelnen Bausteinen (Nukleotiden) Ribonucleinsäuren (in diesem Fall transfer-RNAs) aufbauen bzw. vervollständigen können - ist das Team um Biochemiker Mörl einen wichtigen Schritt vorangekommen. In der aktuellen Ausgabe von PNAS berichtet es über den Aufbau und die Funktion eines sogenannten A-addierenden Enzyms - ein Enzym, das ganz gezielt einen einzelnen Nukleotid-Baustein (Adenosinmonophosphat oder kurz "A") an tRNAs heftet. Erstmals erklären sie, warum diese Enzyme trotz ihrer Ähnlichkeit zu komplexeren Nukleotidyltransferasen nur diese eingeschränkte Reaktion katalysieren können.

tRNA-Nukleotidyltransferasen heften drei Nukleotidbausteine (zwei Cytidinmonophosphate, kurz "C", und ein Adenosinmonophosphat, "A") in der Reihenfolge C-C-A an tRNA-Moleküle und generieren dabei die Position, an der tRNAs mit Aminosäuren beladen werden - eine essentielle Voraussetzung bei der Synthese von Proteinen in der Zelle.

Zunächst war es ein interessantes Phänomen, das Professor Mörl so beschreibt: "Einige dieser Enzyme können nicht die komplette Sequenz C-C-A synthetisieren, sondern sind auf den Einbau der beiden C-Positionen (CC-addierende Enzyme) bzw. der A-Position (A-addierende Enzyme) spezialisiert.

Beide Enzymtypen sehen jedoch auf den ersten Blick gleich aus, sodass nicht klar war, woher diese Spezialisierung kommt." In einer vorangegangenen PNAS-Veröffentlichung (2008) konnten die Forscher bereits klären, weshalb die CC-addierenden Enzyme kein A einbauen können. Bei den A-addierenden Enzymen war dies jedoch deutlich schwieriger: Strukturell gesehen besitzen diese Enzyme alle Komponenten, die nötig sind, um eine komplette C-C-A-Sequenz an tRNAs zu heften.

Aktuell ging es somit um die Frage: "Wenn diese Enzyme alle Elemente zur C-C-A-Addition tragen, warum können sie dann lediglich einen einzelnen A-Rest einbauen?". Die Leipziger Biochemiker entfernten dazu sukzessive immer größere Teile von A-addierenden Enzymen und testeten die entstandenen verkürzten Varianten auf ihre Aktivität. Dabei zeigte sich, dass eine kleine Region dafür verantwortlich ist, dass die A-addierenden Enzyme eine eingeschränkte Funktionalität besitzen. Entfernte man diese Region, so konnten die Enzyme tatsächlich komplette C-C-A-Sequenzen synthetisieren. Die inhibitorische Wirkung dieser Region scheint darin zu liegen, dass über sie reguliert wird, welche tRNAs vom Enzym erkannt werden - nämlich nur noch tRNAs, die bereits die Sequenz C-C erhalten haben und denen somit nur noch das letzte A fehlt. Der Bereich, in dem sich diese Region befindet, ist in der Evolution überraschend variabel und kaum konserviert. Die erhaltenen Daten weisen darauf hin, dass diese Region offenbar von der Natur genutzt wurde, um im Lauf der Evolution die Funktionalität dieser Enzyme zu verändern und sie mit neuen Eigenschaften auszustatten.

Tretbar, S., Neuenfeldt, A., Betat, H., and Mörl, M. (2011) An inhibitory C-terminal Region dictates the Specificity of A-adding Enzymes.

Proc. Natl. Acad. Sci. USA 108, No. 52, 21040-21045.

Editing-Reaktionen als Enzymaktivitäten

Eine weitere aktuelle Veröffentlichung aus der gleichen Arbeitsgruppe beschäftigt sich ebenfalls mit der Entstehung von neuen Enzymfunktionen. Manche RNAs müssen nach ihrer Synthese an einzelnen Positionen noch verändert bzw. durch den Einbau zusätzlicher Nukleotid-Bausteine korrigiert werden. Diese Reaktionen bezeichnet man als "RNA-Editing".

Wie beim klassischen Henne - Ei - Problem stellt sich hierbei die interessante Frage, wie diese Editing-Ereignisse entstanden sind. Einer gängigen Hypothese nach müssen zunächst Nukleotid-einbauende Enzyme vorhanden gewesen sein, die über ein breites Substratspektrum verfügten und somit Bausteine in viele verschiedene RNA-Moleküle einbauten. Erst dann konnten durch Mutationen im Erbgut RNAs entstehen, die durch diese Enzyme editiert und damit wieder korrigiert wurden. Durch verschiedene Experimente an Hefe wies das Team um Professor Mario Mörl nun ein derartiges substrat-tolerantes Enzym nach, das über die beschriebenen Eigenschaften verfügt.

Bislang war diese Enzymaktivität dafür bekannt, eine Qualitätskontrolle an RNAs durchzuführen, wobei es fehlerhafte und unvollständige RNAs durch das Anheften von Nukleotiden zum Abbau markierte. Mit dieser Funktion ist es aber offensichtlich auch in der Lage, unvollständige RNAs zu komplettieren und damit eine Editing-Funktion zu übernehmen. Damit gelang es der Arbeitsgruppe, die Theorie zur Evolution von RNA-Editing Ereignissen experimentell zu belegen und ein entsprechendes Kandidaten-Enzym für Editing-Reaktionen zu identifizieren, das tatsächlich alle bisher postulierten Eigenschaften besitzt.

Molecular Biology and Evolution. 2012.

Anne Alexander

Weitere Informationen:
Prof. Dr. Mario Mörl
Telefon: +49 341 97-36911
E-Mail: moerl@uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de
http://www.biochemie.uni-leipzig.de/agmoerl

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie