Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bio-Minimotoren sind Widerstandskämpfer

14.08.2009
Dresdner Forscher messen Reibungskräfte molekularer Motoren

Reibung limitiert die Geschwindigkeit und Effizienz aller herkömmlichen Maschinen. Gilt dies auch für Nanomaschinen? Dresdner Forscher haben erstmalig mit Hilfe einer Laserpinzette direkt Reibungskräfte zwischen einzelnen molekularen Motoren und deren Schienen gemessen. Sie konnten somit zeigen, dass auch innerhalb unserer Zellen der Widerstand der Reibung die Motoren begrenzt - meist jedoch bei weitem nicht so stark, wie das bei großen Maschinen der Fall ist. Die Messungen können dazu beitragen, essentielle Prozesse in der Zelle wie z.B. deren Teilung, die von Motoren getrieben wird, besser zu verstehen. (Science, 14. August 2009)


Fluoreszenzbild von Einzelmolekülen (links): Bewegung von zwei diffundierenden Kinesin-Molekülen (grün) auf einem Mikrotubulus (rot) als aneinandergereihte Zeitserie. Schemazeichnung (rechts): Zieht man mit Hilfe einer Laserpinzette ein diffundierendes Kinesin-Molekül entlang ei-nes Mikrotubulus, so kann man die Reibungskraft zwischen diesem molekularen Motor und der Oberfläche des Mikrotubulus sehr exakt messen. Bild: MPI-CBG, BIOTEC

Reibung ist die Kraft, die an der Grenzfläche zwischen zwei Körpern entsteht, wenn sie sich relativ zueinander bewegen. Auch im Nanokosmos ist das so: Wenn sich etwa molekulare Motoren auf dem Schienensystem der Zelle — den röhrenförmigen Mikrotubuli — bewegen, dann haben sie ebenfalls gegen den Widerstand der Reibungskräfte anzukämpfen. Die Reibungskräfte, die auf die mikroskopisch kleinen Motorproteine wirken, sind allerdings bisher noch niemals gemessen worden, und so blieb es unbekannt, wie sich Bewegungsrichtung und Geschwindigkeit der Motoren darauf auswirken.

Reibung bremst auch Moleküle

Dresdner Forscher am Biotechnologischen Zentrum (BIOTEC) der TU Dresden und dem Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben dazu das Motorprotein Kinesin auf Mikrokugeln aufgebracht und diese mit einer Laserpinzette über einen Mikrotubulus gezogen. So konnten sie die Reibungskräfte zwischen einzelnen Molekülen und dem Schienentrakt exakt messen. "So wie eine große Maschine durch Reibung ausgebremst wird, ist das auch bei molekularen Motoren der Fall — ihre Geschwindigkeit und Leistung werden begrenzt durch den Widerstand, der durch die Reibung mit dem Schienensystem entsteht", so Erik Schäffer, Gruppenleiter am BIOTEC, und Jonathon Howard, Direktor und Gruppenleiter am MPI-CBG.

Die Wissenschaftler erklären sich das Phänomen auf molekularer Ebene nun als kleine Haftverbindungen zwischen einzelnen Molekülen — Reibung entsteht durch die Kräfte, die für das Auseinanderreißen dieser Verbindungen nötig sind. Die Motoren stolpern dabei mit 8-Millionstel-Millimeter-Schritten über ihre Molekülschienen hinweg. "Das ist genau die Länge der Tubulin-Untereinheiten, aus denen sich ein Mikrotubulus aufbaut und an dem so ein Motor entlangläuft — das Motorprotein scheint also mit seinen kleinen Füßchen von Untereinheit zu Untereinheit zu stapfen", so Schäffer.

Energiesparende Minimotoren

Die Reibungskräfte, die auf das Kinesin wirken, geben auch Aufschluss über die Effizienz dieses Motorproteins. "Ungefähr die Hälfte der Energie, die Kinesin aus dem Treibstoff ATP der Zelle gewinnt, geht als Reibung zwischen Motor und Untergrund verloren", fasst Howard zusammen. "Was nach den Verlusten im Innern des Motors von der Energie übrig bleibt, wird in mechanische Arbeit umgesetzt — alles in al-lem meist effizienter als bei großen Maschinen", fügt Schäffer hinzu. Der Energieverlust wird letztendlich in Wärme umgewandelt, die zum Heizen unseres Körpers beiträgt. So werden z.B. unsere Muskeln unter anderem auch durch Reibung warm, wenn sie etwas leisten müssen.

Originalveröffentlichung:

Volker Bormuth, Vladimir Varga, Jonathon Howard, Erik Schäffer
Protein friction limits diffusive and directed movements of kinesin motors on microtubules

14. August 2009, Science 325, 870 (2009). doi:10.1126/science.1174923

Weitere Informationen erhalten Sie von:

Florian Frisch
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Tel.: +49 (0)351 210-2840
E-Mail: frisch@mpi-cbg.de
Katrin Bergmann
Biotechnologisches Zentrum der TU Dresden, Dresden
Tel.: +49 (0)351 463-40347
E-Mail: info@biotec.tu-dresden.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie