Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bio-Minimotoren sind Widerstandskämpfer

14.08.2009
Dresdner Forscher messen Reibungskräfte molekularer Motoren

Reibung limitiert die Geschwindigkeit und Effizienz aller herkömmlichen Maschinen. Gilt dies auch für Nanomaschinen? Dresdner Forscher haben erstmalig mit Hilfe einer Laserpinzette direkt Reibungskräfte zwischen einzelnen molekularen Motoren und deren Schienen gemessen. Sie konnten somit zeigen, dass auch innerhalb unserer Zellen der Widerstand der Reibung die Motoren begrenzt - meist jedoch bei weitem nicht so stark, wie das bei großen Maschinen der Fall ist. Die Messungen können dazu beitragen, essentielle Prozesse in der Zelle wie z.B. deren Teilung, die von Motoren getrieben wird, besser zu verstehen. (Science, 14. August 2009)


Fluoreszenzbild von Einzelmolekülen (links): Bewegung von zwei diffundierenden Kinesin-Molekülen (grün) auf einem Mikrotubulus (rot) als aneinandergereihte Zeitserie. Schemazeichnung (rechts): Zieht man mit Hilfe einer Laserpinzette ein diffundierendes Kinesin-Molekül entlang ei-nes Mikrotubulus, so kann man die Reibungskraft zwischen diesem molekularen Motor und der Oberfläche des Mikrotubulus sehr exakt messen. Bild: MPI-CBG, BIOTEC

Reibung ist die Kraft, die an der Grenzfläche zwischen zwei Körpern entsteht, wenn sie sich relativ zueinander bewegen. Auch im Nanokosmos ist das so: Wenn sich etwa molekulare Motoren auf dem Schienensystem der Zelle — den röhrenförmigen Mikrotubuli — bewegen, dann haben sie ebenfalls gegen den Widerstand der Reibungskräfte anzukämpfen. Die Reibungskräfte, die auf die mikroskopisch kleinen Motorproteine wirken, sind allerdings bisher noch niemals gemessen worden, und so blieb es unbekannt, wie sich Bewegungsrichtung und Geschwindigkeit der Motoren darauf auswirken.

Reibung bremst auch Moleküle

Dresdner Forscher am Biotechnologischen Zentrum (BIOTEC) der TU Dresden und dem Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben dazu das Motorprotein Kinesin auf Mikrokugeln aufgebracht und diese mit einer Laserpinzette über einen Mikrotubulus gezogen. So konnten sie die Reibungskräfte zwischen einzelnen Molekülen und dem Schienentrakt exakt messen. "So wie eine große Maschine durch Reibung ausgebremst wird, ist das auch bei molekularen Motoren der Fall — ihre Geschwindigkeit und Leistung werden begrenzt durch den Widerstand, der durch die Reibung mit dem Schienensystem entsteht", so Erik Schäffer, Gruppenleiter am BIOTEC, und Jonathon Howard, Direktor und Gruppenleiter am MPI-CBG.

Die Wissenschaftler erklären sich das Phänomen auf molekularer Ebene nun als kleine Haftverbindungen zwischen einzelnen Molekülen — Reibung entsteht durch die Kräfte, die für das Auseinanderreißen dieser Verbindungen nötig sind. Die Motoren stolpern dabei mit 8-Millionstel-Millimeter-Schritten über ihre Molekülschienen hinweg. "Das ist genau die Länge der Tubulin-Untereinheiten, aus denen sich ein Mikrotubulus aufbaut und an dem so ein Motor entlangläuft — das Motorprotein scheint also mit seinen kleinen Füßchen von Untereinheit zu Untereinheit zu stapfen", so Schäffer.

Energiesparende Minimotoren

Die Reibungskräfte, die auf das Kinesin wirken, geben auch Aufschluss über die Effizienz dieses Motorproteins. "Ungefähr die Hälfte der Energie, die Kinesin aus dem Treibstoff ATP der Zelle gewinnt, geht als Reibung zwischen Motor und Untergrund verloren", fasst Howard zusammen. "Was nach den Verlusten im Innern des Motors von der Energie übrig bleibt, wird in mechanische Arbeit umgesetzt — alles in al-lem meist effizienter als bei großen Maschinen", fügt Schäffer hinzu. Der Energieverlust wird letztendlich in Wärme umgewandelt, die zum Heizen unseres Körpers beiträgt. So werden z.B. unsere Muskeln unter anderem auch durch Reibung warm, wenn sie etwas leisten müssen.

Originalveröffentlichung:

Volker Bormuth, Vladimir Varga, Jonathon Howard, Erik Schäffer
Protein friction limits diffusive and directed movements of kinesin motors on microtubules

14. August 2009, Science 325, 870 (2009). doi:10.1126/science.1174923

Weitere Informationen erhalten Sie von:

Florian Frisch
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Tel.: +49 (0)351 210-2840
E-Mail: frisch@mpi-cbg.de
Katrin Bergmann
Biotechnologisches Zentrum der TU Dresden, Dresden
Tel.: +49 (0)351 463-40347
E-Mail: info@biotec.tu-dresden.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive