Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bildung von Kohlensäure in Echtzeit verfolgt

13.11.2009
Eine der wichtigsten chemischen Reaktionen in wässrigen Systemen – die Bildung von Kohlensäure durch Protonierung von Bicarbonat-Ionen – konnten Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie jetzt zeitaufgelöst verfolgen.

Es gelang ihnen erstmals, die molekulare Kohlensäure mittels Ultrakurzzeitspektroskopie im Wasser nachzuweisen. Dabei stellten sie fest, dass Kohlensäure im Wasser länger stabil ist, als bisher angenommen, nämlich mehrere Nanosekunden.

Außerdem konnten sie die Säurekonstante der Kohlensäure genau bestimmen. Die Forscher berichten über ihre Ergebnisse in der aktuellen Ausgabe von Science Express. Sie könnten von Bedeutung für Umweltprozesse sein, bei denen Kohlendioxid und Wasser eine Rolle spielen, etwa bei der Übersäuerung der Ozeane, bei der Verwitterung von Gesteinen oder bei der Lagerung von Kohlendioxid in Sedimentschichten.

Was im Volksmund Kohlensäure genannt wird, ist eigentlich das Gas Kohlendioxid. Dieses verbindet sich in wässrigen Lösungen mit einem Molekül Wasser und wird zur Kohlensäure (H2CO3). Die Kohlensäure ist aber nicht stabil, sondern zerfällt sehr schnell in Kohlendioxid (CO2) und Wasser (H2O). In der extrem kurzen Zeit ihrer Existenz reagiert die Kohlensäure jedoch auch wie eine Säure, nämlich indem sie ein Proton abgibt. Es bleibt dann ein Bicarbonat-Ion zurück. „Diese Reaktion war wegen der schnellen Zerfallszeit der Kohlensäure bisher kaum Messungen zugänglich“, sagt Dr. Erik Nibbering. Bislang konnte deshalb niemand Kohlensäure im Wasser als intaktes Molekül detektieren, obwohl Wissenschaftler ihre Bildungsreaktion seit einem Jahrhundert postuliert haben. Vor zwanzig Jahren hat man Kohlensäure als isoliertes Molekül in der Gasphase oder eingefroren in Eis nachgewiesen. Die MBI-Wissenschaftler haben nun erstmals Kohlensäure auch im Wasser detektiert.

Die Forscher untersuchten mit Femtosekundenlaserpulsen, wie schnell sich die Kohlensäure aus einem Bicarbonat-Ion und einem Proton bildet und wie lange sie stabil bleibt. Aus der Bildungsreaktion der Kohlensäure – der Protonierung – konnten sie Rückschlüsse auf ihre Reaktion als Säure ziehen. Als Protonenspender verwendeten sie sogenannte Photosäuren. Das sind chemische Verbindungen, die sich durch Anregung mit Licht von einer schwachen Säure in eine starke Säure verwandeln. „Diese Photosäuren sind für unsere Experimente ideal, weil wir so den Zeitpunkt der Protonenabgabe genau bestimmen können“, so Nibbering.

Die Forscher beschossen eine Lösung aus Bicarbonat und Photosäure und mit ultrakurzen Lichtblitzen. Dadurch wird die Photosäure „sauer“, sie gibt ihr Proton ab, welches vom Bicarbonat aufgenommen wird, was dadurch zur Kohlensäure wird. Mit einem zweiten, kurz darauf folgenden Lichtblitz konnten die Forscher typische Molekülschwingungen messen und dadurch sehen, wie viel Kohlensäure sich gebildet hatte. Dieses Experiment wiederholten sie immer wieder, nur dass sie den zweiten Blitz minimal zeitversetzt aussendeten. All das spielte sich in unvorstellbar kurzer Zeit, in Femtosekunden ab. Eine Femtosekunde ist der millionste Teil einer Milliardstel Sekunde. Für die Protonierungszeit von Bicarbonat konnten sie auf diese Weise 6 Pikosekunden ermitteln, das sind 6000 Femtosekunden. Da dies eine relativ langsame Protonierungszeit ist, zogen die MBI-Forscher den Schluss, dass Wassermoleküle eine aktive Rolle in der Übergabe des Protons von der Photosäure zum Bicarbonat spielen müssten.

Weil Kohlensäure so schnell zerfällt, konnten Chemiker bislang ihre echte Azidität – also wie sauer sie ist – mit rund 3,6 ± 0,3 nur abschätzen. Das chemische Standardexperiment zur Untersuchung der Säurestärke – die sogenannte Titration – ergibt immer eine Säurekonstante von 6,35; hier ist aber der Zerfall der Kohlensäure mit inbegriffen. Anhand der ultraschnellen Protonierungsexperimente und nachfolgender mathematischer Modellierungen konnten die MBI-Chemiker die Säurekonstante der Kohlensäure in wässriger Lösung mit 3,45 ± 0.15 nun viel genauer angeben. Sie ist damit eine milde Säure, deren Azidität die zwischen der von Ameisensäure und Essigsäure liegt.

Die relativ lange Lebensdauer der Kohlensäure und ihre moderate Azidität sollten in Studien der Chemie des Kohlendioxids in Wasser Berücksichtigung finden, meint Nibbering. Denn Kohlensäure ist nicht nur eine kurzlebige Stufe zwischen Kohlendioxid und Bikarbonat mit Protonen als Nebenprodukt, sondern hat auch eine wichtige eigene Identität. Sie kann als intaktes Molekül reagieren, was beispielsweise bei der Reaktion von Oberflächen von Sedimentschichten von Bedeutung sein kann.

Kontakt:

Dr. Erik Nibbering, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 6392 1477, E-Mail: nibbering@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

nachricht Mit Algen Arthritis behandeln
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungsnachrichten

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungsnachrichten

Turbulente Bewegungen in der Atmosphäre eines fernen Sterns

23.08.2017 | Physik Astronomie