Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bildung des Bräunungspigments Melanin entschlüsselt

23.06.2016

Wissenschaftler aus Mainz und Kiel decken den molekularen Mechanismus der Melaninbildung durch Mutation beteiligter Enzyme auf

Melanin ist ein Pigment, das in fast allen Lebewesen vorkommt und beim Menschen für die Braunfärbung der Haut und die Haarfarbe sorgt. Es hilft Insekten, sich gegen schädliche Bakterien zu wehren, und unterstützt ihre Wundheilung. Melanin verursacht aber auch dunkle Flecken auf Früchten wie Bananen.


Blick in das katalytische Zentrum einer Tyrosinase: Die zwei Aminosäuren Glu235 und Asn240 fixieren ein Wassermolekül HOH112, das dem Substrat (p-Tyrosol) ein Proton entreißt (weiß). Das entstandene Phenolat kann nun an das Kupferion (CuA) binden und die Tyrosinase-Reaktion starten.

Abb./©: Institut für Molekulare Biophysik, JGU

Wie das Pigment genau gebildet wird, war bisher nicht vollständig bekannt. Wissenschaftler der Universitäten in Mainz und Kiel haben jetzt mit einem biotechnologischen Trick den molekularen Mechanismus der Melaninbildung aufgedeckt.

Im Zentrum des Vorgangs steht die Aktivität des Enzyms Tyrosinase. Eine wichtige Lücke im Verständnis der Funktionsweise dieses Enzyms konnte nun geschlossen werden. Die Entdeckung öffnet den Weg für zahlreiche Anwendungen in der Kosmetik- und Lebensmittelindustrie, in der Umwelttechnik und auch in der Medizin.

Die Bildung von Melanin wird durch die Tyrosinase gestartet. „Diese Aktivität haben wir bisher nicht ganz verstanden, wohingegen die Aktivität der verwandten, aber weniger effektiven Catecholoxidasen, die ebenfalls Melanin bilden können, besser bekannt ist“, erklärt Heinz Decker, Leiter des Instituts für Molekulare Biophysik an der Johannes Gutenberg-Universität Mainz (JGU). Über den Hintergrund der unterschiedlichen Reaktivität von Tyrosinasen und Catecholoxidasen war in den vergangenen Jahrzehnten viel geforscht worden, jedoch ohne Erfolg.

Ausgehend von Hinweisen, die eine israelische Studie unter der Leitung von Dr. A. Fishman geliefert hatte, klärten Heinz Decker und Even Solem von der JGU und Felix Tuczek von der Christian-Albrechts-Universität zu Kiel den Reaktionsmechanismus experimentell auf. Sie wandelten dazu eine Catecholoxidase aus Riesling-Weinblättern biotechnologisch in eine Tyrosinase um, indem sie eine gezielte Mutation vornahmen.

Als Schlüssel für die unterschiedliche Reaktivität erweisen sich zwei Aminosäuren, die hoch konservierte Glutaminsäure und Asparagin in der Nähe des katalytischen Zentrums. Sie binden ein spezielles Wassermolekül innerhalb der Proteinmatrix so stark, dass eine Ladungsverschiebung im Wassermolekül erfolgt.

Dadurch wird eine Seite sehr negativ, sodass sie ein positives Proton von dem Monophenol abzieht. Damit startet die Tyrosinase. Sie wandelt Monophenole in chemisch sehr reaktive Substanzen, sogenannte Chinone, um, die sich selbstständig zu Melanin verbinden. Fehlt dagegen das Asparagin oder das Wassermolekül in dem Protein, liegt keine Tyrosinase vor, sondern nur eine Catecholoxidase.

Mit dieser Entdeckung ist ein entscheidender Schritt in der Katalyse von Tyrosinasen und damit der Synthese von Melanin verstanden. Dies erlaubt es in Zukunft, die Aktivierung, Hemmung und Modifikation sowie biotechnologische Anwendungen im Bereich der Medizin, Kosmetik und Umweltforschung gezielt mittels gentechnischer Methoden zu optimieren.

„Gleichzeitig haben wir damit ein weiteres Kapitel in der Kupferchemie aufgeklärt“, fasst Decker zusammen. Die Ergebnisse der Untersuchung wurden in der renommierten Fachzeitschrift Angewandte Chemie International Edition veröffentlicht.

Veröffentlichung:
Even Solem, Felix Tuczek, Heinz Decker
Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference
Angewandte Chemie International Edition, 15. Januar 2016
DOI: 10.1002/anie.201508534


Weitere Informationen:
Prof. Dr. Heinz Decker
Institut für Molekulare Biophysik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23570
Fax +49 6131 39-23557
E-Mail: hdecker@uni-mainz.de
http://www.biophysik.uni-mainz.de/

Weitere Links:
http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508534/full (Angewandte Chemie International Edition)
http://onlinelibrary.wiley.com/doi/10.1002/ange.201508534/full (Angewandte Chemie, deutsche Ausgabe)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie