Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungssehen – warum die Welt im Kopf still steht, wenn sich unsere Augen bewegen

22.03.2012
Tübinger Wissenschaftler entdecken neue Funktionen von Gehirnarealen, welche für das Bewegungssehen zuständig sind.

Wenn wir eine Fliege beobachten, die im Raum hin und her fliegt, und ihr mit unseren Augen folgen, müssen wir den Eindruck haben, dass der sich dahinter liegende Raum bewegt und nicht die Fliege. Schließlich ist die Fliege immer fest im zentralen Blickwinkel. Wie aber vermittelt uns das Gehirn den Eindruck einer bewegten Fliege in einem unbewegten Raum?


Bei der visuellen Verfolgung eines sich bewegenden Objekts, nehmen wir die Welt als stabil wahr, trotz ihrer Bewegung über die Netzhaut. Dieses Bild illustriert die Bewegungsunschärfe wie sie auf der Netzhaut ankommt, wenn der Beobachter entweder dem bewegten Objekt mit den Augen folgt oder star auf den Hintergrund gerichtet hält.
Grafik: Andreas Bartels, Elvira Fischer / Max-Planck-Institut für biologische Kybernetik, Geänderte Fotos von shutterstock.com

Tübinger Wissenschaftler vom Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) und vom Max-Planck-Institut für biologische Kybernetik haben mit Hilfe der funktionellen Magnetresonanztomografie zwei Gehirnareale im Menschen identifiziert, die die Augenbewegungen mit der visuellen Bewegung auf der Netzhaut vergleichen, um bewegte Objekte korrekt wahrzunehmen.

V3A und V6 heißen die beiden Gehirnareale in der oberen Hälfte des Hinterkopfes, die besonders gut auch während Augenbewegungen auf externe Bewegung reagieren können. Das Areal V3A verknüpft beide Bewegungen: Es reagiert auf Bewegungen in unserer Umgebung, egal ob wir das bewegte Objekt mit den Augen verfolgen oder nicht. Das Areal reagiert aber nicht auf visuelle Bewegungen auf der Netzhaut, wenn sie durch Augenbewegungen selbst hervorgerufen werden. Areal V6 hat ähnliche Eigenschaften, wird aber selbst dann aktiv, wenn wir uns vorwärts bewegen. Die Rechenarbeit des Gehirns ist in diesem Fall komplizierter: Die zweidimensionale seitwärts Bewegung, die durch Augenbewegung verursacht wird, wird von der dreidimensional expandierenden Vorwärtsbewegung überlagert.

Untersucht haben die Wissenschaftler Elvira Fischer und Andreas Bartels vom Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN) und vom Max-Planck-Institut für biologische Kybernetik diese Areale mit Hilfe der funktionellen Magnetresonanztomografie – ein bildgebendes Verfahren, das die Aktivität im lebenden Gehirn sichtbar machen kann. Die aktiven Bereiche werden anhand des erhöhten Blutsauerstoffspiegels erkannt. Während die Studienteilnehmer mit den Augen zum Beispiel einen kleinen Punkt verfolgen, der von links nach rechts über einen Bildschirm wandert, messen die Wissenschaftler die Gehirnaktivität Je nach Versuchsaufbau bleibt der Hintergrund unbewegt oder er bewegt sich in verschiedenen Geschwindigkeiten mit dem Punkt mit. Manchmal bleibt auch der kleine Punkt stehen und nur der Hintergrund bewegt sich.

In insgesamt sechs Experimenten maßen die Forscher in mehr als einem Dutzend verschiedener Kombinationen die jeweilige Gehirnaktivität in den verschiedenen Arealen. Dabei stellten sie fest, dass V3A und V6 im Unterschied zu anderen visuellen Arealen im Gehirn eine erstaunlich hohe Fähigkeit haben, die Bewegungen des Auges mit den visuellen Signalen auf der Netzhaut zu vergleichen. „Mich begeistert vor allem V3A, weil es so stark und selektiv auf Bewegung in unserer Umgebung reagiert. Das klingt trivial, ist aber eine erstaunliche Leistung des Gehirns“, erklärt Andreas Bartels, Projektleiter der Studie.

Ob wir uns selber bewegen oder sich etwas in unserer Umgebung bewegt, ist ein Problem, über das wir nur selten nachdenken, da unser Gehirn die visuelle Informationen unterbewusst ständig für uns umrechnet und korrigiert. Doch Patienten, die die Fähigkeit dieser Integration verloren haben, können nicht mehr erkennen, was sich letztendlich bewegt: die Umgebung oder sie sich selbst. Diese Patienten empfinden jedes Mal ein Schwindelgefühl, wenn sie ihre Augen bewegen. Studien wie diese bringen uns einem Verständnis der Ursachen solcher Krankheiten einen Schritt näher.

Die Studie war ein Kollaborationsprojekt zwischen dem Centrum für Integrative Neurowissenschaften (CIN) und den Abteilungen für Wahrnehmung, Kognition und Handlung von Heinrich Bülthoff und für Physiologie kognitiver Prozesse von Nikos Logothetis am Max-Planck-Institut für biologische Kybernetik.

Originalpublikation:
Elvira Fischer, Heinrich H. Bülthoff, Nikos K. Logothetis, Andreas Bartels (2012) Human areas V3A and V6 compensate for self-induced planar visual motion (2012). Neuron, doi:10.1016/j.neuron.2012.01.022
Ansprechpartner:
Dr. Andreas Bartels
Centrum für Integrative Neurowissenschaften (CIN)
Tel.: 07071 601-656
E-Mail: andreas.bartels@cin.uni-tuebingen.de
Stephanie Bertenbreiter
Pressereferentin
Max-Planck-Institut für biologische Kybernetik
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Dr. Petra Heymann
Wissenschaftliche Koordinatorin
Centrum für Integrative Neurowissenschaften(CIN)
Tel.: 07071 2989-184
E-Mail: petra.heymann@cin.uni-tuebingen.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdisziplinäre Einrichtung der Universität Tübingen. Mehrere Fakultäten, das Max-Planck-Institut für Biologische Kybernetik, das Hertie Institut für Klinische Hirnforschung, das Fraunhofer Institut für Produktionstechnik und Automatisierung und weitere Institute sind Teil des CIN, dessen disziplinübergreifendes Konzept zudem von einer Vielzahl interner und externer Partner unterstützt wird. Die Wissenschaftler des CIN untersuchen die neuronalen Grundlagen von Hirnleistungen wie Wahrnehmung, Gedächtnis, Gefühle, Kommunikation und Handeln und wie Gehirnerkrankungen diese Leistungen beeinflussen.

Stephanie Bertenbreiter | Max-Planck-Institut
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.kyb.tuebingen.mpg.de/de/aktuelles-und-veranstaltungen/pressemitteilungen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik