Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsschichten im Gehirn: Neurobiologen entdecken elementare Bewegungsdetektoren in der Fliege

08.08.2013
Seit über 50 Jahren sagt ein mathematisches Modell präzise voraus, wie der elementare Bewegungsdetektor im Gehirn aufgebaut sein müsste. Welche Nervenzellen dazu jedoch wie verschaltet sind, das blieb ein Rätsel.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried sind nun diesem "Heiligen Gral der Fliegenforschung" einen entscheidenden Schritt näher gekommen: Sie fanden die Ausgangszellen des elementaren Bewegungsdetektors im Fliegenhirn.


Im Fliegenhirn filtern bestimmte Nervenzellen die Richtungsinformation einer Bewegung heraus und leiten diese in sauber getrennte Schichten des Gehirns weiter. MPI für Neurobiologie / Borst

Die in "Nature" publizierten Ergebnisse zeigen, dass das Gesehene zunächst in zwei separate Verarbeitungsbahnen aufgetrennt wird. Bewegungen werden dann innerhalb dieser Bahnen nach ihrer Richtung sortiert und weiterverarbeitet.

Vor beinahe 100 Jahren warf der berühmte Neuroanatom Ramón y Cajal einen Blick ins Fliegengehirn und entdeckte dort eine Reihe von Zellen, die er als "merkwürdige Elemente mit zwei Büscheln" beschrieb. Etwa 50 Jahre später postulierte der deutsche Physiker Werner Reichardt aufgrund seiner Verhaltensexperimente an Fliegen die Existenz sogenannter "elementarer Bewegungs-detektoren". Diese Detektoren vergleichen an jedem Punkt im Blickfeld die Helligkeitsänderungen zwischen zwei benachbarten Facetten des Fliegenauges. Daraus wird dann die Richtung einer lokalen Bewegung errechnet. Soweit die Theorie. Seitdem spekuliert die Gemeinde der Fliegen-forscher, ob die von Cajal beschriebenen "Büschel-Zellen" diese mysteriösen elementaren Bewegungs-detektoren sind.

Die Antwort auf diese Frage ließ lange auf sich warten, denn die Büschel-Zellen sind extrem klein. Viel zu klein, um sie mit einer Elektrode anzustechen und ihre elektrischen Signale einzufangen. Nun gelang Alexander Borst und seinen Mitarbeitern vom Max-Planck-Institut für Neurobiologie der Durchbruch mit Hilfe eines Kalzium-Indikators. Diese fluoreszierenden Proteine werden von den Nervenzellen selbst gebildet und ändern ihre Helligkeit, wenn die Zelle aktiv ist. So war es den Wissenschaftlern endlich möglich, die Aktivität der Büschel-Zellen unter dem Mikroskop zu sehen und zu messen. Die Ergebnisse belegen, dass diese Zellen tatsächlich die von Werner Reichardt vorhergesagten elementaren Bewegungsdetektoren sind.

Wie weitere Experimente zeigten, lassen sich die Büschel-Zellen in zwei Gruppen aufteilen: Die eine Gruppe (T4-Zellen) reagiert nur auf einen bewegten Übergang von dunkel zu hell, die andere Gruppe (T5-Zellen) wird umgekehrt nur bei Hell-Dunkel-Kanten aktiv. Innerhalb jeder Gruppe gibt es vier Untergruppen, die jeweils nur auf Bewegungen in eine bestimmte Richtung ansprechen – nach rechts, links, aufwärts oder abwärts. Die Nervenzellen dieser richtungsselektiven Gruppen geben ihre Informationen in sauber voneinander getrennte Schichten des nachfolgenden Nervengewebes ab.

Die hier ansässigen großen Nervenzellen nutzen diese Signale dann zur visuellen Kurssteuerung und geben zum Beispiel entsprechend Befehle an die Flugmuskulatur weiter. Letzteres konnten die Wissenschaftler eindrucksvoll belegen: Blockierten sie die T4-Zellen, so waren sowohl die nachgeschalteten Nervenzellen als auch die Fliegen in Verhaltenstests blind für Bewegungen von Dunkel-Hell-Kanten. Beim Blockieren von T5-Zellen wurden Hell-Dunkel-Kanten nicht mehr wahrgenommen.

Im Gespräch über ihre gerade im Fachjournal Nature erschienenen Forschungsergebnisse zeigten sich die beiden Erstautoren der Studie, Matt Maisak und Jürgen Haag, sehr beeindruckt von der „säuberlich aufgedröselten“ aber „hoch geordneten“ Bewegungsinformation im Fliegengehirn. Alexander Borst, der Leiter der Studie, fügt hinzu: „Das war echtes Teamwork – fast alle Mitarbeiter meiner Abteilung waren an den Experimenten beteiligt: Die eine Gruppe machte die Kalzium-Messungen, die andere die Elektrophysiologie, eine dritte die Verhaltensmessungen. Alle zogen an einem Strang. Das war eine wunderbare Erfahrung.“

Ähnlich soll es weitergehen, denn die Wissenschaftler wenden sich schon der nächsten Mammutaufgabe zu: Nun wollen sie die Nervenzellen identifizieren, die die Eingangssignale für die elementaren Bewegungsdetektoren liefern. Laut Reichardt müssen hier die beiden Signale, die von benachbarten Facetten des Auges kommen, zeitlich gegeneinander verzögert sein. „Das wird jetzt wirklich spannend!“, so Alexander Borst.

Originalveröffentlichung:
Matthew S Maisak, Jürgen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald Rubin, Aljoscha Nern, Barry Dickson, Dierk F Reiff, Elisabeth Hopp, Alexander Borst
Directional tuning and layer-specific projection of elementary motion detectors in Drosophila

Nature, 8. August 2013

Kontakt:
Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: bost@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/borst

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten