Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsschichten im Gehirn: Neurobiologen entdecken elementare Bewegungsdetektoren in der Fliege

08.08.2013
Seit über 50 Jahren sagt ein mathematisches Modell präzise voraus, wie der elementare Bewegungsdetektor im Gehirn aufgebaut sein müsste. Welche Nervenzellen dazu jedoch wie verschaltet sind, das blieb ein Rätsel.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried sind nun diesem "Heiligen Gral der Fliegenforschung" einen entscheidenden Schritt näher gekommen: Sie fanden die Ausgangszellen des elementaren Bewegungsdetektors im Fliegenhirn.


Im Fliegenhirn filtern bestimmte Nervenzellen die Richtungsinformation einer Bewegung heraus und leiten diese in sauber getrennte Schichten des Gehirns weiter. MPI für Neurobiologie / Borst

Die in "Nature" publizierten Ergebnisse zeigen, dass das Gesehene zunächst in zwei separate Verarbeitungsbahnen aufgetrennt wird. Bewegungen werden dann innerhalb dieser Bahnen nach ihrer Richtung sortiert und weiterverarbeitet.

Vor beinahe 100 Jahren warf der berühmte Neuroanatom Ramón y Cajal einen Blick ins Fliegengehirn und entdeckte dort eine Reihe von Zellen, die er als "merkwürdige Elemente mit zwei Büscheln" beschrieb. Etwa 50 Jahre später postulierte der deutsche Physiker Werner Reichardt aufgrund seiner Verhaltensexperimente an Fliegen die Existenz sogenannter "elementarer Bewegungs-detektoren". Diese Detektoren vergleichen an jedem Punkt im Blickfeld die Helligkeitsänderungen zwischen zwei benachbarten Facetten des Fliegenauges. Daraus wird dann die Richtung einer lokalen Bewegung errechnet. Soweit die Theorie. Seitdem spekuliert die Gemeinde der Fliegen-forscher, ob die von Cajal beschriebenen "Büschel-Zellen" diese mysteriösen elementaren Bewegungs-detektoren sind.

Die Antwort auf diese Frage ließ lange auf sich warten, denn die Büschel-Zellen sind extrem klein. Viel zu klein, um sie mit einer Elektrode anzustechen und ihre elektrischen Signale einzufangen. Nun gelang Alexander Borst und seinen Mitarbeitern vom Max-Planck-Institut für Neurobiologie der Durchbruch mit Hilfe eines Kalzium-Indikators. Diese fluoreszierenden Proteine werden von den Nervenzellen selbst gebildet und ändern ihre Helligkeit, wenn die Zelle aktiv ist. So war es den Wissenschaftlern endlich möglich, die Aktivität der Büschel-Zellen unter dem Mikroskop zu sehen und zu messen. Die Ergebnisse belegen, dass diese Zellen tatsächlich die von Werner Reichardt vorhergesagten elementaren Bewegungsdetektoren sind.

Wie weitere Experimente zeigten, lassen sich die Büschel-Zellen in zwei Gruppen aufteilen: Die eine Gruppe (T4-Zellen) reagiert nur auf einen bewegten Übergang von dunkel zu hell, die andere Gruppe (T5-Zellen) wird umgekehrt nur bei Hell-Dunkel-Kanten aktiv. Innerhalb jeder Gruppe gibt es vier Untergruppen, die jeweils nur auf Bewegungen in eine bestimmte Richtung ansprechen – nach rechts, links, aufwärts oder abwärts. Die Nervenzellen dieser richtungsselektiven Gruppen geben ihre Informationen in sauber voneinander getrennte Schichten des nachfolgenden Nervengewebes ab.

Die hier ansässigen großen Nervenzellen nutzen diese Signale dann zur visuellen Kurssteuerung und geben zum Beispiel entsprechend Befehle an die Flugmuskulatur weiter. Letzteres konnten die Wissenschaftler eindrucksvoll belegen: Blockierten sie die T4-Zellen, so waren sowohl die nachgeschalteten Nervenzellen als auch die Fliegen in Verhaltenstests blind für Bewegungen von Dunkel-Hell-Kanten. Beim Blockieren von T5-Zellen wurden Hell-Dunkel-Kanten nicht mehr wahrgenommen.

Im Gespräch über ihre gerade im Fachjournal Nature erschienenen Forschungsergebnisse zeigten sich die beiden Erstautoren der Studie, Matt Maisak und Jürgen Haag, sehr beeindruckt von der „säuberlich aufgedröselten“ aber „hoch geordneten“ Bewegungsinformation im Fliegengehirn. Alexander Borst, der Leiter der Studie, fügt hinzu: „Das war echtes Teamwork – fast alle Mitarbeiter meiner Abteilung waren an den Experimenten beteiligt: Die eine Gruppe machte die Kalzium-Messungen, die andere die Elektrophysiologie, eine dritte die Verhaltensmessungen. Alle zogen an einem Strang. Das war eine wunderbare Erfahrung.“

Ähnlich soll es weitergehen, denn die Wissenschaftler wenden sich schon der nächsten Mammutaufgabe zu: Nun wollen sie die Nervenzellen identifizieren, die die Eingangssignale für die elementaren Bewegungsdetektoren liefern. Laut Reichardt müssen hier die beiden Signale, die von benachbarten Facetten des Auges kommen, zeitlich gegeneinander verzögert sein. „Das wird jetzt wirklich spannend!“, so Alexander Borst.

Originalveröffentlichung:
Matthew S Maisak, Jürgen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald Rubin, Aljoscha Nern, Barry Dickson, Dierk F Reiff, Elisabeth Hopp, Alexander Borst
Directional tuning and layer-specific projection of elementary motion detectors in Drosophila

Nature, 8. August 2013

Kontakt:
Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: bost@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/borst

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte