Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegungsschichten im Gehirn: Neurobiologen entdecken elementare Bewegungsdetektoren in der Fliege

08.08.2013
Seit über 50 Jahren sagt ein mathematisches Modell präzise voraus, wie der elementare Bewegungsdetektor im Gehirn aufgebaut sein müsste. Welche Nervenzellen dazu jedoch wie verschaltet sind, das blieb ein Rätsel.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried sind nun diesem "Heiligen Gral der Fliegenforschung" einen entscheidenden Schritt näher gekommen: Sie fanden die Ausgangszellen des elementaren Bewegungsdetektors im Fliegenhirn.


Im Fliegenhirn filtern bestimmte Nervenzellen die Richtungsinformation einer Bewegung heraus und leiten diese in sauber getrennte Schichten des Gehirns weiter. MPI für Neurobiologie / Borst

Die in "Nature" publizierten Ergebnisse zeigen, dass das Gesehene zunächst in zwei separate Verarbeitungsbahnen aufgetrennt wird. Bewegungen werden dann innerhalb dieser Bahnen nach ihrer Richtung sortiert und weiterverarbeitet.

Vor beinahe 100 Jahren warf der berühmte Neuroanatom Ramón y Cajal einen Blick ins Fliegengehirn und entdeckte dort eine Reihe von Zellen, die er als "merkwürdige Elemente mit zwei Büscheln" beschrieb. Etwa 50 Jahre später postulierte der deutsche Physiker Werner Reichardt aufgrund seiner Verhaltensexperimente an Fliegen die Existenz sogenannter "elementarer Bewegungs-detektoren". Diese Detektoren vergleichen an jedem Punkt im Blickfeld die Helligkeitsänderungen zwischen zwei benachbarten Facetten des Fliegenauges. Daraus wird dann die Richtung einer lokalen Bewegung errechnet. Soweit die Theorie. Seitdem spekuliert die Gemeinde der Fliegen-forscher, ob die von Cajal beschriebenen "Büschel-Zellen" diese mysteriösen elementaren Bewegungs-detektoren sind.

Die Antwort auf diese Frage ließ lange auf sich warten, denn die Büschel-Zellen sind extrem klein. Viel zu klein, um sie mit einer Elektrode anzustechen und ihre elektrischen Signale einzufangen. Nun gelang Alexander Borst und seinen Mitarbeitern vom Max-Planck-Institut für Neurobiologie der Durchbruch mit Hilfe eines Kalzium-Indikators. Diese fluoreszierenden Proteine werden von den Nervenzellen selbst gebildet und ändern ihre Helligkeit, wenn die Zelle aktiv ist. So war es den Wissenschaftlern endlich möglich, die Aktivität der Büschel-Zellen unter dem Mikroskop zu sehen und zu messen. Die Ergebnisse belegen, dass diese Zellen tatsächlich die von Werner Reichardt vorhergesagten elementaren Bewegungsdetektoren sind.

Wie weitere Experimente zeigten, lassen sich die Büschel-Zellen in zwei Gruppen aufteilen: Die eine Gruppe (T4-Zellen) reagiert nur auf einen bewegten Übergang von dunkel zu hell, die andere Gruppe (T5-Zellen) wird umgekehrt nur bei Hell-Dunkel-Kanten aktiv. Innerhalb jeder Gruppe gibt es vier Untergruppen, die jeweils nur auf Bewegungen in eine bestimmte Richtung ansprechen – nach rechts, links, aufwärts oder abwärts. Die Nervenzellen dieser richtungsselektiven Gruppen geben ihre Informationen in sauber voneinander getrennte Schichten des nachfolgenden Nervengewebes ab.

Die hier ansässigen großen Nervenzellen nutzen diese Signale dann zur visuellen Kurssteuerung und geben zum Beispiel entsprechend Befehle an die Flugmuskulatur weiter. Letzteres konnten die Wissenschaftler eindrucksvoll belegen: Blockierten sie die T4-Zellen, so waren sowohl die nachgeschalteten Nervenzellen als auch die Fliegen in Verhaltenstests blind für Bewegungen von Dunkel-Hell-Kanten. Beim Blockieren von T5-Zellen wurden Hell-Dunkel-Kanten nicht mehr wahrgenommen.

Im Gespräch über ihre gerade im Fachjournal Nature erschienenen Forschungsergebnisse zeigten sich die beiden Erstautoren der Studie, Matt Maisak und Jürgen Haag, sehr beeindruckt von der „säuberlich aufgedröselten“ aber „hoch geordneten“ Bewegungsinformation im Fliegengehirn. Alexander Borst, der Leiter der Studie, fügt hinzu: „Das war echtes Teamwork – fast alle Mitarbeiter meiner Abteilung waren an den Experimenten beteiligt: Die eine Gruppe machte die Kalzium-Messungen, die andere die Elektrophysiologie, eine dritte die Verhaltensmessungen. Alle zogen an einem Strang. Das war eine wunderbare Erfahrung.“

Ähnlich soll es weitergehen, denn die Wissenschaftler wenden sich schon der nächsten Mammutaufgabe zu: Nun wollen sie die Nervenzellen identifizieren, die die Eingangssignale für die elementaren Bewegungsdetektoren liefern. Laut Reichardt müssen hier die beiden Signale, die von benachbarten Facetten des Auges kommen, zeitlich gegeneinander verzögert sein. „Das wird jetzt wirklich spannend!“, so Alexander Borst.

Originalveröffentlichung:
Matthew S Maisak, Jürgen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald Rubin, Aljoscha Nern, Barry Dickson, Dierk F Reiff, Elisabeth Hopp, Alexander Borst
Directional tuning and layer-specific projection of elementary motion detectors in Drosophila

Nature, 8. August 2013

Kontakt:
Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: bost@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/borst

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften