Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegung ist Leben - Wiener Forscher klären die Struktur des zellulären Antriebssystems

27.04.2010
Viele Zellen sind zu aktiver Bewegung fähig. Sie benutzen dazu einen inneren Antrieb mit Recycling-Funktion. Forschern am IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften) und IMP (Forschungsinstitut für Molekulare Pathologie) in Wien gelang es mittels Kryo-Elektronentomographie, den Vorgang buchstäblich einzufrieren und den molekularen Motor wirklichkeitsgetreu darzustellen. Über die Erkenntnisse, die das gängige Lehrbuchmodell erschüttern, berichtet das Wissenschaftsjournal Nature Cell Biology in seiner kommenden Ausgabe.

Immunzellen machen es, Tumorzellen ebenfalls und embryonale Zellen sowieso. Sie bewegen sich im umgebenden Gewebe aktiv und zielstrebig vorwärts. Ohne diese Fähigkeit könnten sich weiße Blutzellen nicht auf eingedrungene Bakterien stürzen und Wunden könnten sich nicht schließen. Verhängnisvoll ist der Bewegungsdrang, wenn er außer Kontrolle gerät, sich bösartige Zellen aus einem Tumor lösen und an anderer Stelle des Körpers Metastasen bilden.

Ein Netz von Perlschnüren in der Zelle

Der zelleigene Motor besteht aus dem Eiweißbaustein Aktin, der - vielfach aneinandergereiht, zu Fäden verknüpft und verdrillt - die Zelle wie ein Netz durchzieht. Die zarten Fäden bilden das Zytoskelett, eine für die Zellfunktion überaus wichtige Struktur. Die Vielseitigkeit der Aktinfäden hängt mit ihrer Fähigkeit zusammen, sowohl schiebende als auch ziehende Bewegungen zu vermitteln. Am „Vorderende“ der Zellen werden Aktinmoleküle wie Perlen an einer Schnur aufgereiht, während die Kette vom hinteren Ende her abgebaut wird. Die einzelnen Bausteine werden dabei kontinuierlich recycelt.

Einzeller bewegen sich relativ plump, indem sie ihren Zellinhalt stetig nach vorne drücken. In Fachkreisen spricht man vom „Zahnpastamodell“ der Bewegung. Innerhalb komplexer Organismen müssen wandernde Zellen jedoch in Gewebe eindringen und sich zwischen eng miteinander verbundene Zellen schieben. Dies gelingt ihnen, indem sie in Bewegungsrichtung zunächst sehr schmale Ausläufer oder zarte Fortsätze bilden und den Rest des Zellinhalts nachziehen.

Der britisch-österreichische Zellbiologe Vic Small, Senior Scientist am IMBA, beschäftigt sich mit der Frage, wie die Bewegung von Zellen im Detail abläuft und wie die Aktinfilamente in den Zellausläufern angeordent sind. Gemeinsam mit seinen Mitarbeiterinnen Edit Urban, Sonja Jacob und Maria Nemethova konnte er nun erstmals die zellinternen Strukturen in ihrem natürlichen Zustand beschreiben. Dass er dabei die gängige Lehrbuchmeinung widerlegt, sorgt in Fachkreisen derzeit für angeregte Diskussionen.

Schlanke Fäden statt zerkochter Spaghetti

Elektronenmikroskopische Bilder zeigten bisher scheinbar deutlich, dass sich die Aktinfäden am vorderen Ende von wandernden Zellen stark verzweigen - in ein dendritisches Netzwerk. Bevor die Zellen allerdings ihr Innerstes preisgaben, wurden sie zur Vorbereitung auf Elektronenstrahl und Vakuum einer groben Prozedur unterzogen. Entwässert, fixiert und mit Schwermetallen überzogen, waren die ultrakleinen Strukturen längst kollabiert, bevor sie betrachtet werden konnten. Dass die zweidimensionale Abbildung lediglich eine Projektion der räumlichen Situation darstellt, entfremdet die Darstellung zusätzlich.

„Was wir bisher gesehen haben, kann man sich wie einen Klumpen klebriger, zerkochter Spaghetti vorstellen, die dann auch noch flach gequetscht werden“, beschreibt Vic Small das gängige Verfahren. „Wir können nun zeigen, dass es diese Verzweigungen gar nicht gibt, sondern dass wir es mit langen, unverzweigten Aktinfäden zu tun haben, die hauptsächlich übereinander liegen“.

Hochtechnologie für zarte Strukturen

Um das dendritische Modell als optische Täuschung zu entlarven, mussten die IMBA-Forscher die Zellstrukturen möglichst unverfälscht betrachten. Dies gelang mit der Kryo-Elektronentomographie, einer Kombination aus zwei Technologien, die in den letzten zehn Jahren zu einem leistungsfähigen Verfahren zusammengeführt wurden.

Das Kryo-Elektronenmikroskop erlaubt es, schockgefrorene Proben bei -196˚C zu untersuchen. Extrem rasches Abkühlen mit einer Rate von -10 000 Grad pro Sekunde lässt das in den Proben enthaltene Wasser nicht zu kristallinem Eis erstarren sondern vitrifizieren. Im gläsernen Eis bleiben die empfindlichen Zellstrukturen nahezu unverändert erhalten. Die Tomographie wird angewandt, um die räumlichen Verhältnisse zu erfassen. Das Objekt wird bei der Aufnahme schrittweise gekippt und in verschiedenen Perspektiven abgebildet - pro Objekt entstehen so 100-200 Bilder.

Das Kryo-Elektronenmikroskop ist das Herzstück des „Center of Molecular and Cellular Nanostructure“, einer gemeinsamen Initiative von IMP und IMBA. Als „Vienna Spot of Excellence“ wird das Projekt von der Stadt Wien und dem ZiT (Zentrum für Innovation und Technologie) gefördert. Das zwei Millionen Euro teure Mikroskop wird von Günter Resch betreut, dem Leiter der IMP-IMBA Serviceeinrichtung für Elektronenmikroskopie. Seine im Lauf des Projekts gesammelte Erfahrung floss auch in die Weiterentwicklung der neuen Technologie mit ein. Gemeinsam mit Leica Microsystems konstruierte er ein Immersionsfriergerät, das die Probenvorbereitung automatisiert. Diese „Gefriermaschine“ wird mittlerweile serienmäßig angeboten.

Die Aufklärung der Struktur des Zellmotors hat weitreichende Bedeutung. „Wir müssen völlig umdenken, was den Antrieb von Zellen angeht“, meint Vic Small. „Das betrifft nicht nur die Bewegung der Zellen selbst, sondern auch die Art und Weise, wie manche Krankheitserreger sich im Körper verbreiten.“

In einem der nächsten Projekte untersuchen die IMBA-Forscher Mikroorganismen, die in Zellen eindringen und den Aktin-Motor für ihre eigenen Zwecke kidnappen. Zu diesen zählen etwa Bakterien der Gattung Listeria.

Die Arbeit “Electron tomography reveals unbranched networks of actin filaments in lamellipodia” von Edit Urban et al. erscheint in der Mai-Ausgabe von Nature Cell Biology. Sie wurde wurde in elektronischer Form vorveröffentlicht (DOI 10.1038/ncb2044).

Zur Person von Vic Small
John Victor Small wurde 1944 in Orpington (UK) geboren. Er studierte am Londoner King’s College, wo er 1969 sein Doktorat in Physik erhielt. Forschungsaufenthalte führten ihn an die Universität Aarhus (Dänemark), die Universität Melbourne (Australien) und an die Harvard-Universität (USA). Von 1977 bis 2003 leitete Vic Small die Abteilung Zellbiologie am Institut für Molekularbiologie der Österreichischen Akademie der Wissenschaften in Salzburg, dessen Direktor er insgesamt neun Jahre lang war. 1984 habilitierte er sich in den Fächern Biochemie und Zellbiologie. Seit 2004 ist Vic Small Senior Scientist am Wiener Institut für Molekulare Biotechnologie (IMBA) der Österreichischen Akademie der Wissenschaften.
Über IMBA
Das IMBA – Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften kombiniert Grundlagen- und angewandte Forschung auf dem Gebiet der Biomedizin. Interdisziplinär zusammengesetzte Forschergruppen bearbeiten funktionsgenetische Fragen, besonders in Zusammenhang mit der Krankheitsentstehung. Ziel ist es, das erworbene Wissen in die Entwicklung innovativer Ansätze zur Prävention, Diagnose und Therapie von Krankheiten einzubringen.
IMP-IMBA Research Center
Zwischen dem Forschungsinstitut für Molekulare Pathologie (IMP), das 1988 von Boehringer Ingelheim gegründet wurde, und dem seit 2003 operativen Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA) wurde eine enge Forschungskooperation vereinbart. Unter dem Namen “IMP-IMBA Research Center” greifen die beiden Institute auf eine gemeinsame Infrastruktur im wissenschaftlichen und administrativen Bereich zu. Die beiden Institute beschäftigen insgesamt etwa 400 Mitarbeiter aus 30 Nationen und sind Mitglied des Campus Vienna Biocenter.
Kontakt:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Tel. +43 1 79730-3625
heidemarie.hurtl@imba.oeaw.ac.at
Wissenschaftlicher Kontakt:
Prof. John Victor Small, IMBA
vic.small@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imba.oeaw.ac.at/research/vic-small/ -
http://cellix.imba.oeaw.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE