Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum betrunkene Bakterien Wissenschaftlern viel über molekulare Prozesse in der Zelle verraten

02.04.2012
"Es ist mein Wunsch, das Leben von Bakterien so gut es eben geht zu erklären", sagt Ulf Liebal.

Der 30-jährige Biochemiker der Universität Rostock hat in Halle studiert und seine Diplomarbeit, über die Wirkstoffproduktion in Bakterien in Finnland geschrieben. Die Forschung im Labor sagt dem jungen Mann, der im Studentenorchester Fagott spielt, allerdings nicht so zu.

Seiner Faszination, zu erfassen wie aus kleinsten Molekülen ein komplexer Organismus entsteht, tut das aber keinen Abbruch. Deshalb ist sein Metier die noch junge Disziplin der Systembiologie - der "Biochemie am Computer" wie er sagt. Hier kombiniert er Methoden der experimentellen Biologie und der Bioinformatik mit mathematischen Modellierungsansätzen.

So entsteht am Rechner ein Bild der Vorgänge innerhalb einer Zelle, der kleinsten biologischen Einheit, die sich selbst vermehren kann. Konkret erforscht Ulf Liebal, wie das im Boden lebende Bakterium Bazillus subtilis auf Stress reagiert, in diesem Falle, wenn es mit Alkohol in Berührung kommt.

"Ich untersuche also betrunkene Bakterien", beschreibt der junge Wissenschaftler seine Arbeit. Zwar wird im Laborversuch Alkohol bewusst eingesetzt, in der Natur allerdings gibt es mehrere Quellen, aus denen Alkohol entsteht und in den Boden sickert: beispielsweise faulende Früchte.

"Viele denken bei Bakterien an Krankheitserreger, die wir mit anti-bakteriellen Reinigungsmitteln aus unseren Häusern vertreiben", sagt Ulf Liebal. Das Bakterium, das er untersucht, ist überall in der Umwelt anzutreffen. Es lebt im Boden und hilft den Pflanzen beim Wachstum, ist also kein Krankheitserreger. Wie gedeiht es im Boden und wie reagiert es auf die Umwelt? Das will der junge Forscher herausfinden. Es ist bekannt, dass ein Bakterium nach einem Stresserlebnis seine Zusammensetzung ändert.

Die Untersuchungen mit Alkohol nutzt der 30-Jährige, um mehr über die Verknüpfung von Stresserlebnis und Zusammensetzung des Bakterium erfahren. So gibt es einen Einblick, welche Prozesse Bakterien im Menschen auslösen können, womit sich auch neue Möglichkeiten zum Beispiel zur Behandlung von Lebensmittelvergiftungen ergeben.

Alkohol stresst Bakterien, weil er wichtige Proteine beschädigt. Deshalb hat sich das Bakterium einen eigenen Alkoholtest entwickelt. Dieser Testsensor besteht aus 60 Proteinen, die geometrisch und symmetrisch aufgebaut sind. "Das muss man sich in etwa wie einen Weihnachtsstern vorstellen", sagt der Forscher. Er hat mit einem einfachen Papiermodell diesen Sensor nachgebaut.

"Ich bin jetzt in der Lage, die Bewegungen des Proteins auf Tischmodellgröße nachzuempfinden". So zeigt sich, dass es allgemeine Regeln für Bewegungen von geometrischen Strukturen gibt. Die sind vermutlich auch für den mikroskopisch kleinen Sensor in der Zelle gültig. Ulf Liebal gewinnt durch sein Modell einen besseren Einblick, wie das Bakterium auf Alkohol reagiert. Spürt eines von den 60 Proteinen Alkohol, dann bewegt sich das Protein und aktiviert damit andere in der Nachbarschaft. "So kann wenig Alkohol schon eine große Reaktion in der Zelle auslösen. Ein kleines Geheimnis ist damit gelüftet", ist der junge Mann stolz.

Für ihn sind Papier und Kreativität wichtiger geworden als teure Labore. Dennoch benutzt er Daten von Partner-Laboratorien, um seine Modelle an die Wirklichkeit anzupassen. Diese sind unentbehrlich, um die komplexen molekularen Anpassungsvorgänge vollständig zu erfassen. Um die biologischen Organismen in ihrer Gesamtheit jedoch besser verstehen zu können, arbeiten Wissenschaftler verschiedener Fachrichtungen interdisziplinär eng zusammen.

Die experimentellen Untersuchungen erfordern zudem so komplexe, aufwendige und teure Laboreinrichtungen, dass ein einzelnes Labor dazu nicht in der Lage wäre. Die Gruppe um Professor Olaf Wolkenhauer in Rostock, zu der auch Ulf Liebal gehört, ist Teil einer großen internationalen Initiative, der sogenannten BaCell-SysMO, die sich zum Ziel gesetzt hat, das Bakterium nicht nur besser zu verstehen, sondern auch besser nutzen zu können.

In Deutschland unterstützt das Bundesministerium für Bildung und Forschung (BMBF) neben den Wissenschaftlern in Rostock auch Forschergruppen in Greifswald, Göttingen, Erlangen, Braunschweig und Marburg. Im Ausland arbeiten Universitäten in Groningen, Manchester und Newcastle an den gleichen Zielen. "Vernetzung, um Vernetzung aufzuklären. Das ist Systembiologie", sagt Professor Olaf Wolkenhauer.

Kontakt:
Universität Rostock
Fakultät für Informatik und Elektrotechnik Dipl. Biochem. Ulf Liebal
Fon: +49 (0)381 498 7577
eMail: ulf.liebal@uni-rostock.de
Presse+Kommunikation
Dr. Ulrich Vetter
Fon: +49 (0)381 498 1013
eMail: ulrich.vetter@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften