Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Betrügerischer Schwarzer Aronstab

08.10.2010
Aronstabgewächs imitiert hefeartigen Duft und lockt damit Fruchtfliegen in die Falle

Einen seit rund 40 Millionen Jahren andauernden Betrug haben jetzt Wissenschaftler aus dem Max-Planck-Institut für chemische Ökologie aufgeklärt.


Die Schwarze Calla (Arum palaestinum), aufgenommen im Freiland. Bild: Johannes Stökl, MPI chemische Ökologie


Im Blütenkelch der Calla gefangene Fruchtfliegen. Bild: Johannes Stökl

Arum palaestinum, ein im Nahen Osten vorkommendes Aronstabgewächs, lockt Fruchtfliegen als Bestäuber an, indem es exakt diejenigen Duftmoleküle aussendet, die durch Hefepilze auf faulenden Früchten und bei alkoholischer Gärung entstehen. Dank eines neuartigen Messverfahrens, dem functional imaging, konnten die Forscher den Weg der duftenden Moleküle von der Pflanze bis in das Gehirn der Insekten verfolgen.

Sie fanden, dass die Calla acht verschiedene Fruchtfliegenarten verführt und dass deren Sinneswahrnehmung und Verhalten beim Riechen von Hefegärung und Aronstabduft nahezu identisch waren. Im Nervensystem der Tiere reagierten besonders deutlich zwei entwicklungsgeschichtlich ursprüngliche Geruchsrezeptoren. Diese Rezeptoren haben sich vermutlich im Laufe der Evolution auf die Wahrnehmung von Hefegeruch spezialisiert. Die Schwarze Calla missbraucht diesen Millionen Jahre alten Instinkt der Fliegen für ihre eigenen Zwecke. (Current Biology, 7. Oktober 2010)

Die Gattung Drosophila - als Frucht- oder Essigfliegen bezeichnet - ist artenreich und hat viele unterschiedliche Nahrungsquellen für sich erschlossen. Das Spektrum umfasst Früchte bis hin zu Bakterienrasen, die auf bestimmten tropischen Krabbenarten wachsen. Viele Drosophila-Arten nutzen Hefepilze als Hauptnahrungs-mittel. Ihre Fühler und die aus so genannten Glomeruli bestehenden Riechkolben sind auf typische Duftmoleküle wachsender Hefepilze spezialisiert. Kleinste Molekül-konzentrationen in der Luft reichen aus, um die Fruchtfliegen auf die Nahrungsquelle hinzuweisen.

Viele Blütenpflanzen wiederum sind auf Insekten als Bestäuber angewiesen, um Nachkommenschaft und genetische Variabilität zu gewährleisten. Sie locken die Tiere beispielsweise mit farbigen Blütenblättern und Duftbouquets an. Hat der Bestäuber die Blüte erreicht, wird er mit Nektar dafür belohnt, dass er den Pollen auf eine andere Pflanze überträgt. Das Aronstabgewächs Arum palaestinum jedoch greift zu betrügerischen Mitteln. Die auch Schwarze Calla genannte Pflanze produziert in ihren Blüten, die innenseitig violett-schwarz gefärbt sind, einen Geruch, der von Menschen mit dem von fruchtigem Wein verglichen wird. Mit diesem Duft, so stand zu vermuten, lockt die Schwarze Calla ihre Bestäuber an, nämlich Fruchtfliegen. Diese werden in der Blüte jedoch nicht mit Nektar belohnt, sondern im Gegenteil noch über Nacht in der Blüte gefangen gehalten und erst am nächsten Tag wieder freigelassen.

Auch Drosophila melanogaster lässt sich täuschen
Johannes Stökl und Marcus Stensmyr haben nicht nur diesen Duft gesammelt und analysiert, sondern gleichzeitig die Fruchtfliegenarten, die sich im Kelch der Pflanzen verfangen, bestimmt und untersucht. Gemeinsam mit dem Verhaltensbiologen Markus Knaden haben sie dann die Reaktionen der Tiere auf die verschiedenen Duftmoleküle überprüft. Ihre beiden Kolleginnen Silke Sachse und Antonia Strutz wiederum haben neurophysiologische Experimente an den Fliegen durchgeführt. Es stellte sich ein interessantes Ergebnis heraus: Arum palaestinum lockt im Durchschnitt rund 140 Fliegen je Pflanze an, die zu acht verschiedenen Drosophila Arten gehören, inklusive der bekannten Art Drosophila melanogaster, an der als Modellorganismus in vielen Laboren geforscht wird und deren Genom vollständig bekannt ist.

Im Duft der Pflanze konnten 14 verschiedene chemische Verbindungen nachgewiesen werden, auf die die Antennen der Fliegen reagierten. Für diese Untersuchungen hat Johannes Stökl von den Antennen der Tiere Aktionspotenziale elektrisch abgeleitet und aufgezeichnet. Die chemische Analyse der von der Pflanze abgegebenen Duftstoffe ergab, dass es sich vornehmlich um Esterverbindungen handelte. "Auffallend in diesem Bouquet aber waren zwei spezielle ‚Duftnoten‘, nämlich 2,3-Butandiolacetat und Acetoinacetat", so Marcus Stensmyr, Leiter der Studie. Diese Moleküle sind nämlich nicht in den Bouquets von blühenden Pflanzen enthalten und sind charakteristisch für Essig, insbesondere Aceto Balsamico, und Wein, also zwei durch Hefe erzeugte Gärungsprodukte. Diese beiden sowie vier weitere Verbindungen, die ebenfalls bei Hefegärung entstehen, zeigten außerdem im Elektroantennogramm die stabilsten und stärksten Signale.

Zwei Rezeptoren, ein Betrug

In neurophysiologischen Untersuchungen wurden Fruchtfliegen verschiedenen natürlichen Duftbouquets ausgesetzt, beispielsweise fauligen Pfirsichen oder Bananen sowie Lambrusco (Rotwein) und Aceto Balsamico (Essig). Die jeweiligen Elektroantennogramme glichen auffallend den Aufzeichnungen mit Fliegen, die dem Geruch der Schwarzen Calla ausgesetzt waren - fast identisch zum Calla-Duft verhielten sich Rotwein und Essig, also die gezielt durch Hefegärung gewonnenen Produkte. "Die Fliegen können somit den Aronstab nicht von fauligen Früchten unterscheiden - sie werden also von der Pflanze betrogen, denn diese imitiert nur den Hefeduft, bietet aber noch nicht einmal Hefe als Nahrungsmittel an", so Johannes Stökl. Für ihre unfreiwillige Hilfe als Bestäuber werden die Insekten also nicht einmal belohnt, sondern bleiben hungrig in der Blüte gefangen, bis sich diese nach 24 Stunden wieder öffnet.

Dank eines Kalzium-sensitiven Farbstoffes konnte Silke Sachse, Leiterin der Arbeitsgruppe Optical Imaging, zusammen mit ihrer Doktorandin Antonia Strutz die speziellen Hefe-Duftreize bis ins Gehirn der Fliegen verfolgen. Mit diesem als functional imaging bezeichneten Verfahren zeigten sie, dass 11 verschiedene Duftrezeptoren reagierten. Weil es verschiedene Drosophila Arten waren, die auf die Schwarze Calla hereinfielen, lag nahe, dass unter diesen Rezeptoren auch evolutionär frühe Exemplare dabei sein könnten, was tatsächlich der Fall ist. "Die Sequenz zweier Duftrezeptoren, Or42b und Or92a, ist sehr konserviert - man kann sie daher durchaus als "Hefe-Detektor" bezeichnen", so Bill Hansson, Direktor am Institut. Und dieses Ergebnis lässt befürchten, dass die Schwarze Calla ihren Betrug schon seit vielen Millionen Jahren betreibt.

[JWK]

Originalveröffentlichung:

Johannes Stökl, Antonia Strutz, Amots Dafni, Ales Svatos, Jan Doubsky, Markus Knaden, Silke Sachse, Bill S. Hansson, Marcus C. Stensmyr
A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast.

Current Biology, October 7, 2010, DOI 10.1016/j.cub.2010.09.033.

Weitere Informationen erhalten Sie von:

Prof. Dr. Bill S. Hansson
Max-Planck-Institut für chemische Ökologie, Jena
Tel.: +49 3641- 57-1400
E-Mail: hansson@ice.mpg.de
Dr. Marcus C. Stensmyr
Max-Planck-Institut für chemische Ökologie, Jena
Tel.: +49 3641 57-1420
E-Mail: mstensmyr@ice.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie