Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bestimmter Glutamat-Rezeptor unterstützt optimale Informationsverarbeitung im Gehirn

30.03.2015

Lernen und Gedächtnisbildung faszinieren die Forschung seit langem, und noch immer sind viele Fragen ungeklärt.

Die Bochumer Neurowissenschaftler Prof. Dr. Denise Manahan-Vaughan und Dr. Hardy Hagena sind jetzt einem weiteren Baustein dieses komplexen Prozesses auf die Spur gekommen. Ein bestimmter Rezeptor, der metabotrope Glutamat 5-Rezeptor, dient als Schalter, um im Hippokampus, einer für das Gedächtnis entscheidenden Gehirnregion, gegensätzliche Formen der Anpassung zu aktivieren. Sie berichten in der aktuellen Ausgabe des „Journal of Neuroscience“.

Kontaktstellen zwischen Nervenzellen verarbeiten verschiedene Informationen

Die Gehirnregion um den Hippokampus ist entscheidend an der Gedächtnisbildung und der Verarbeitung räumlicher Informationen beteiligt. Der Hippokampus selbst lässt sich in verschiedene Regionen unterteilen: den Gyrus dentatus, Cornu ammonis (CA) 3 und CA1. Die zu verarbeitenden Informationen durchlaufen wie in einer Einbahnstraße nacheinander diese drei Regionen, wobei jede Region unterschiedliche räumliche Informationen der Umwelt verarbeitet.

Eine besondere Rolle spielt hierbei CA3. Sie erhält zum einen Informationen über die sogenannten Moosfasern (MF), die aus Nervenzellen des Gyrus dentatus stammen und mit den Pyramidenneuronen in CA3 Kontaktstellen bilden, die Synapsen, in diesem Fall MF-CA3-Synapsen. Zum anderen kommunizieren aber auch Nervenzellen aus der CA3-Region sowohl derselben als auch der benachbarten Gehirnhälfte über bestimmte Fasern – die assoziativ/commissural (AC)-Fasern – auf CA3-Zellen und bilden hier die AC-CA3-Synapsen.

„Wir haben bereits gezeigt, dass diese zwei Synapsen unterschiedliche Arten von Informationen verarbeiten und dass diese unterschiedliche Art der Informationsverarbeitung vermutlich verantwortlich dafür ist, dass die CA3-Region eine wichtige Rolle beim Arbeitsgedächtnis sowie bei der ‚pattern completion‘ spielt, einem Vorgang, der dazu dient, dass wir eine gesamte und komplexe Erinnerung aus einem kleinen Fragment wiederherstellen können“, erklärt Hardy Hagena.

Anpassung an Anforderungen: synaptische Plastizität

Doch wie kommt es dazu, dass Informationen an MF-CA3- und AC-CA3-Synapsen unterschiedlich verarbeitet werden? Auf Ebene der Nervenzellen führt die Verarbeitung von Informationen zu einer Anpassung an die Anforderungen, also praktisch einem Gedächtniseffekt. Die Forscher sprechen von synaptischer Plastizität. Sie äußert sich in zwei Formen: als Langzeitpotenzierung (long-term potentiation, LTP), einer Verstärkung der synaptischen Übertragung, und als Langzeitdepression (long-term depression, LTD), einer Abschwächung der synaptischen Übertragung.

Sowohl LTP als auch LTD codieren dabei verschiedene Arten von räumlichen Informationen. Vorangegangene Studien haben für verschiedene Hirnregionen gezeigt, dass der metabotrope Glutamat 5-Rezeptor (mGlu5-Rezeptor) eine bedeutende Rolle bei dieser lang anhaltenden Form der synaptischen Plastizität spielt.

Wie der Rezeptor die Gedächtnisbildung beeinflusst

„Aufgrund dieser Erkenntnisse war es besonders interessant herauszufinden, ob und inwiefern der mGlu5-Rezeptor die synaptische Plastizität und damit auch die Gedächtnisbildung in der CA3-Region beeinflusst“, erklärt Hagena. Die Forscher schalteten den Rezeptor pharmakologisch in MF-CA3-Synapsen aus und stimulierten dann die entsprechenden informationsübertragenden Fasern. Daraufhin stellten sie zwar keine LTP mehr fest, konnten aber weiterhin LTD beobachten.

Im Gegensatz dazu kam es bei Ausschaltung des mGlu5-Rezeptors in AC-CA3-Synapsen zu einer Blockierung von LTD, aber nicht von LTP. „Diese Ergebnisse zeigen, dass bei einer Aktivierung des mGlu5-Rezeptors vorzugsweise LTP in den MF-CA3-Synapsen und LTD in den AC-CA3-Synapsen hervorgerufen wird“, folgern die Forscher.

Faszinierender Einblick in die Funktionsweise der Hippokampusregion

„Diese Ergebnisse erlauben uns einen faszinierenden Einblick in die Funktionsweise und Regulierung synaptischer Plastizität in der CA3-Region des Hippokampus“, so die Bilanz der Forscher. „Besonders interessant ist der Einfluss des mGlu5-Rezeptors, der bei Aktivierung, z.B. bei Lernvorgängen, bei der Verarbeitung neuer Informationen der Umwelt oder auch während Prozessen wie der ‚pattern completion‘ die Richtung der synaptischen Plastizität vorgibt, indem LTP bevorzugt an MF-CA3-Synapsen hervorgerufen wird und LTD an AC-CA3-Synapsen.“

Diese gegensätzliche Regulation der synaptischen Plastizität unterstützt eine optimale Informationsverarbeitung und -speicherung und unterstreicht die einzigartige Rolle dieser Region bei Lernvorgängen und der Gedächtnisbildung.

Titelaufnahme

H. Hagena, D. Manahan-Vaughan (2015): mGlu5 acts as a switch for opposing forms of synaptic plasticity at mossy fiber-CA3 and commissural associational-CA3 Synapses, The Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.3417-14.2015

Weitere Informationen

Dr. Hardy Hagena, Prof. Dr. Denise Manahan-Vaughan, Abteilung für Neurophysiologie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-22042, hardy.hagena@rub.de; Denise.Manahan-Vaughan@rub.de

Redaktion: Meike Drießen

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie