Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Besser Lernen durch zerbrechliche Synapsen

09.12.2010
Synapsen zwischen Nervenzellen werden ständig aufgebaut, verstärkt oder wieder abgebaut.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie und der Yale University haben nun das Protein SynCAM1 untersucht, das Synapsen wie eine Art Klebstoff zusammen hält. Wurde die SynCAM1-Menge experimentell erhöht, stieg die Anzahl der Synapsen - die Nervenzellen sollten mehr Wege zur Übertragung von Informationen haben.


Wurde die Menge des Proteins SynCAM1 experimentell erhöht, so bildeten Nervenzellen deutlich mehr Synapsen aus (Vergleich: rechtes Bild mit erhöhtem SynCAM1). Im Lerntest schnitten diese Mäuse jedoch schlechter ab als Tiere, denen das Protein fehlte. Bild: MPI für Neurobiologie / Stein

Im Verhaltenstest lernten jedoch Mäuse ohne SynCAM1 deutlich besser als Kontrolltiere. Nicht nur der Aufbau sondern auch der Abbau von Synapsen scheint essentiell für Lernen und Gedächtnis zu sein. Eine Erkenntnis, die auch für bestimmte Krankheiten interessant sein kann.

Das Gehirn gleicht einer Großbaustelle. Ständig wachsen auf der Oberfläche von Nervenzellen neue Fortsätze. Trifft solch ein Fortsatz auf die entsprechende Struktur einer Nachbarzelle, reifen die Fortsatzenden zu einer Synapse. Erst diese Kontaktstellen machen es möglich, Informationen von einer Zelle zur nächsten zu übertragen. Ist eine vorhandene Synapse ineffizient oder wird nicht mehr gebraucht, so wird sie wieder abgebaut. Wissenschaftler sind sich einig, dass die Fähigkeiten zu lernen, zu vergessen oder sich an etwas zu erinnern, auf diesem ständigen Umbau des Gehirns beruhen.

Synapsenkleber mit Funktion?

Trotz der geringen Größe von Synapsen ist ihre Funktion mittlerweile recht gut verstanden. Dagegen sind die Entstehung von Synapsen und die daran beteiligten Moleküle nur schwer zu untersuchen. Es konnten bestimmte Proteine identifiziert werden, die die beiden Seiten einer Synapse während ihrer Reifung in Position halten. Ob diese Proteine jedoch auch die Funktion der Synapsen beeinflussen, blieb bisher ungeklärt. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried und der Yale University in New Haven konnten nun einige Funktionen eines dieser Proteine aufdecken.

"Das Protein SynCAM1 hält die beiden Seiten einer Synapse wie eine Art Klebstoff zusammen und wir haben uns gefragt, ob das Einfluss auf die Anzahl und die Lebensdauer der Synapsen hat", berichtet Alexander Krupp vom Max-Planck-Institut für Neurobiologie. Diesen Fragen gingen die Wissenschaftler nach, indem sie in genetisch veränderten Mäusen die Menge an SynCAM1 zeitweise erhöhten, oder das Protein ganz entfernten. Die Veränderungen, die darauf unter dem Mikroskop und in Verhaltenstests zu beobachten waren, überraschten die Neurobiologen.

Die Ergebnisse zeigten, dass SynCAM1 nicht nur beim Aufbau der Synapsen eine Rolle spielt, sondern auch für den Erhalt von vorhandenen Synapsen wichtig ist. War die Menge von SynCAM1 künstlich erhöht, so fanden die Neurobiologen deutlich mehr Synapsen. Wurde die SynCAM1-Menge dann durch einen genetischen Trick wieder reduziert, verschwanden die zusätzlichen Synapsen wieder. Dieser Effekt war nicht nur auf die Entwicklungsphase des Gehirns beschränkt, in der sich die meisten Synapsen bilden, sondern wurde auch im erwachsenen Gehirn beobachtet.

Leichter lernen ohne SynCAM1

"Man könnte vermuten, dass Tiere mit einer erhöhten Synapsenzahl Informationen besser verarbeiten oder behalten können", erwägt Valentin Stein, einer der beiden Leiter der Studie. Doch genau das Gegenteil war der Fall – sie lernten schlechter. Ein Verhaltenstest stellte klar, dass Mäuse ohne SynCAM1 schneller lernen und sich besser erinnern können.

Dieses Ergebnis scheint nur auf den ersten Blick unlogisch. Mit SynCAM1 werden zwar mehr Synapsen gebildet. Sie sind jedoch auch stabiler, sodass es schwieriger wird unnötige Verbindungen wieder aufzulösen. Die Neurobiologen vermuten daher, dass der beobachtete Unterschied in der Lernfähigkeit im Abbau ungenutzter Synapsen liegt. Ohne SynCAM1 können sich die Kontakte leichter wieder trennen. "Unsere Ergebnisse zeigen, wie wichtig auch der Abbau von Synapsen für Lernen und Gedächtnis ist", so Stein. Dies ist an sich schon ein kleiner Durchbruch. SynCAM1 könnte jedoch auch bei Krankheiten mit veränderter Synapsenbildung, wie zum Beispiel Autismus, eine Rolle spielen. Ebenso scheint eine therapeutische Bedeutung von SynCAM1, beispielsweise bei der Alzheimerschen Krankheit, nicht ausgeschlossen. Diese Aspekte werden die Wissenschaftler bei ihrer weiteren Forschung im Auge behalten.

Originalveröffentlichung:
SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning
Elissa M. Robbins*, Alexander J. Krupp*, Karen Perez de Arce, Ananda K. Ghosh, Adam I. Fogel, Antony Boucard, Thomas C. Südhof, Valentin Stein**, Thomas Biederer** [*,** equal contribution]

Neuron, online Veröffentlichung vom 8. Dezember 2010

Kontakt:
Dr. Stefanie Merker, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
E-mail: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie