Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aller Anfang ist zufällig

12.12.2007
Münsteraner Wissenschaftler finden heraus, dass das Schicksal der Zellen im frühen Embryo spontan reguliert wird

Bei Säugetieren bildet der frühe Embryo eine einzigartige Vorstruktur, die Blastozyste, die eine Einnistung in die Gebärmutter und die Versorgung des Embryos ermöglicht. Lange war unklar, ab wann die Zellen im Embryo einen spezifischen Entwicklungsweg einschlagen. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin in Münster stellen in ihrer Studie in Development ein neues Modell für die frühen Abläufe im Embryo vor. Zuerst erhalten die Zellen ihre molekulare Ausrichtung eher zufällig, später organisieren sich die Zellen anhand ihres molekularen Fingerabdrucks (Development, 1. Dezember 2007).


Aus dem 8-Zell-Stadium isolierte Zellen teilen sich und organisieren sich selbst zu "Mini-Blastozysten": Zellen mit viel Cdx2 (weiß, links) orientieren sich eher außen. Das Protein Nanog (weiß, rechts) beeinflusst die Position der Zellen nicht. Die Ränder der einzelnen Zellen sind rot angefärbt. Bild: MPI für molekulare Biomedizin

Säugetiere bestehen aus mehr als 200 verschiedenen Zelltypen, die alle ihre spezifischen Aufgaben haben. Die Zelltypen des erwachsenen Lebewesens, aber auch ein Teil der Plazenta, stammen von einer einzigen Zelle ab, der befruchteten Eizelle. Wie können sich aus einer einzigen Zelle so viele hoch spezialisierte Zellen entwickeln und zu Geweben formen? Um der Antwort auf die Spur zu kommen, beobachten Wissenschaftler, wann die ersten Unterschiede zwischen den Zellen im frühen Embryo auftauchen. Jens-Erik Dietrich und Takashi Hiiragi haben hierzu die Eigenschaften und die Position der einzelnen Zellen im frühen Embryo verfolgt.

Am dritten Tag nach der Befruchtung, nach fünf Zellteilungen, besteht ein Mausembryo aus 32 Zellen. Es hat sich zu einer kugeligen Struktur, der sogenannten Blastozyste, entwickelt, die innen hohl ist. Zu diesem Zeitpunkt gibt es bereits mindestens zwei völlig unterschiedliche Zelltypen. Außen liegt eine einzelne Zellschicht, das Trophektoderm, aus dem ein Teil der Plazenta hervorgeht und das für die Nährstoffversorgung des sich entwickelnden Embryos zuständig ist. Im Inneren der Höhle befindet sich, am Rand der äußeren Zellschicht, ein Zellhaufen, auch innere Zellmasse genannt. Aus dieser bildet sich letztendlich die Maus.

Wie aber entstehen die ersten Unterschiede zwischen den Zellen? Entwickelt jede Zelle sein Programm zufällig oder ist das Schicksal vorherbestimmt, schon bevor man es "mit dem Auge" erfassen kann? Untersuchungen an Fruchtfliegen, Krallenfröschen und Zebrafischen haben gezeigt, dass spezifische Faktoren in bestimmten Regionen innerhalb der Eizelle entscheiden, wie sich die Zellen entwickeln, die sich während den ersten Teilungen bilden. In diesen Organismen gibt es demzufolge eine sehr frühe Ausrichtung der Zellen im Embryo. Diese Vorab-Strukturierung klang so verlockend, dass Wissenschaftler versuchten, diese Art von Musterbildung in der Maus als Modell für Säugetiere zu finden.

... mehr zu:
»Blastozyste »Cdx2 »Embryo »Zelle »Zellteilung

Die Zellen im frühen Mausembryo organisieren sich spontan

Jens-Erik Dietrich und Takashi Hiiragi haben in ihrer Studie die Expressionsmuster von drei Faktoren (Oct4, Cdx2 und Nanog) untersucht. Diese sind im 8-Zell Stadium noch in allen Zellen zu finden. In der späten Blastozyste jedoch sind sie entweder nur in der inneren Zellmasse (Oct4 und Nanog), oder nur außen, im Trophektoderm (Cdx2) zu finden. Diese molekularen Fingerabdrücke haben Dietrich und Hiiragi benutzt, um den Mechanismus zu beobachten, durch den die Zellen sich im Embryo organisieren.

Auffällig war ein extrem variables Muster der Expressionslevel einiger der Faktoren (Nanog und Cdx2). Manche Zellen hatten viel, andere sehr wenig. Überraschend war die Willkürlichkeit der Variabilität. Weder die Position im frühen Embryo, noch eine gegenseitige Korrelation bestimmten das Muster. Um der Sache auf den Grund zu gehen, untersuchten Dietrich und Hiiragi, ob diese Prozesse in isolierten embryonalen Zellen genauso verlaufen wie im Embryo. Hierzu ließen Dietrich und Hiiragi einzelne Zellen aus dem 8-Zell-Stadium ein- oder zweimal teilen. Die Zellen produzierten entweder zwei gleich große Schwesterzellen oder zwei unterschiedliche, ein Phänomen das auf sogenannter symmetrischer bzw. asymmetrischer Zellteilung beruht. Nanog war in symmetrisch und asymmetrisch geteilten Zellen immer in gleicher Menge vorhanden. Es befand sich jedoch immer mehr Cdx2 in der größeren Zelle. Nach zwei Zellteilungen organisierten sich die entstandenen vier Zellen zu Mini-Blastozysten, in denen die Zellen, die außen lagen immer mehr Cdx2 hatten, als die im Inneren. "Hieraus schließen wir, dass die Art der Zellteilung das Cdx2 Niveau der Zellen reguliert, und dass das Proteinmuster dann bestimmt, wohin die Zelle sich bewegt", sagt Dietrich. Besonders interessant war für Dietrich und Hiiragi aber die Beobachtung, dass die Anzahl der Zellen eines Embryos, die eine asymmetrische Teilung durchlaufen, sehr variabel ist. "Anscheinend ist diese Variabilität in der Art der Zellteilung für die Blastozystenbildung unerheblich; die Musterbildungs-Prozesse sind so flexibel in ihrer Regulation, dass sich am Ende trotzdem immer eine Blastozyste bildet, die eben für die Einnistung erforderlich ist."

Diese Ergebnisse sprechen gegen die Annahme, dass jede Eizelle eine "Blaupause" für die weitere Entwicklung trägt. Dietrich und Hiiragi haben gezeigt, dass das molekulare Profil in den Zellen nach dem Zufallsprinzip etabliert wird. Danach wandern die Zellen dahin, wo ihr Programm sie diktiert. Aller Anfang scheint also zufällig. Dietrich fügt hinzu: "Zufall lässt sich aber schwer beweisen." Deswegen werden Dietrich und Hiiragi die Zellen weiter unter die Lupe nehmen, um ihr vorgeschlagenes Zwei-Phasen-Modell zu bekräftigen.

Originalveröffentlichung:

Jens-Erik Dietrich and Takashi Hiiragi
Stochastic patterning in the mouse pre-implantation embryo
Development 2007, doi 10.1242/dev.003798

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blastozyste Cdx2 Embryo Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Selbsthaftende Gespenster
21.06.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
21.06.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen

21.06.2018 | Biowissenschaften Chemie

Astronautennahrung für Kühe: Industriell gezüchtete Mikroben als umweltfreundliches Futter

21.06.2018 | Agrar- Forstwissenschaften

Weltweit einzigartige Femtosekundenlaseranlage eingeweiht

21.06.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics