Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aller Anfang ist zufällig

12.12.2007
Münsteraner Wissenschaftler finden heraus, dass das Schicksal der Zellen im frühen Embryo spontan reguliert wird

Bei Säugetieren bildet der frühe Embryo eine einzigartige Vorstruktur, die Blastozyste, die eine Einnistung in die Gebärmutter und die Versorgung des Embryos ermöglicht. Lange war unklar, ab wann die Zellen im Embryo einen spezifischen Entwicklungsweg einschlagen. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin in Münster stellen in ihrer Studie in Development ein neues Modell für die frühen Abläufe im Embryo vor. Zuerst erhalten die Zellen ihre molekulare Ausrichtung eher zufällig, später organisieren sich die Zellen anhand ihres molekularen Fingerabdrucks (Development, 1. Dezember 2007).


Aus dem 8-Zell-Stadium isolierte Zellen teilen sich und organisieren sich selbst zu "Mini-Blastozysten": Zellen mit viel Cdx2 (weiß, links) orientieren sich eher außen. Das Protein Nanog (weiß, rechts) beeinflusst die Position der Zellen nicht. Die Ränder der einzelnen Zellen sind rot angefärbt. Bild: MPI für molekulare Biomedizin

Säugetiere bestehen aus mehr als 200 verschiedenen Zelltypen, die alle ihre spezifischen Aufgaben haben. Die Zelltypen des erwachsenen Lebewesens, aber auch ein Teil der Plazenta, stammen von einer einzigen Zelle ab, der befruchteten Eizelle. Wie können sich aus einer einzigen Zelle so viele hoch spezialisierte Zellen entwickeln und zu Geweben formen? Um der Antwort auf die Spur zu kommen, beobachten Wissenschaftler, wann die ersten Unterschiede zwischen den Zellen im frühen Embryo auftauchen. Jens-Erik Dietrich und Takashi Hiiragi haben hierzu die Eigenschaften und die Position der einzelnen Zellen im frühen Embryo verfolgt.

Am dritten Tag nach der Befruchtung, nach fünf Zellteilungen, besteht ein Mausembryo aus 32 Zellen. Es hat sich zu einer kugeligen Struktur, der sogenannten Blastozyste, entwickelt, die innen hohl ist. Zu diesem Zeitpunkt gibt es bereits mindestens zwei völlig unterschiedliche Zelltypen. Außen liegt eine einzelne Zellschicht, das Trophektoderm, aus dem ein Teil der Plazenta hervorgeht und das für die Nährstoffversorgung des sich entwickelnden Embryos zuständig ist. Im Inneren der Höhle befindet sich, am Rand der äußeren Zellschicht, ein Zellhaufen, auch innere Zellmasse genannt. Aus dieser bildet sich letztendlich die Maus.

Wie aber entstehen die ersten Unterschiede zwischen den Zellen? Entwickelt jede Zelle sein Programm zufällig oder ist das Schicksal vorherbestimmt, schon bevor man es "mit dem Auge" erfassen kann? Untersuchungen an Fruchtfliegen, Krallenfröschen und Zebrafischen haben gezeigt, dass spezifische Faktoren in bestimmten Regionen innerhalb der Eizelle entscheiden, wie sich die Zellen entwickeln, die sich während den ersten Teilungen bilden. In diesen Organismen gibt es demzufolge eine sehr frühe Ausrichtung der Zellen im Embryo. Diese Vorab-Strukturierung klang so verlockend, dass Wissenschaftler versuchten, diese Art von Musterbildung in der Maus als Modell für Säugetiere zu finden.

... mehr zu:
»Blastozyste »Cdx2 »Embryo »Zelle »Zellteilung

Die Zellen im frühen Mausembryo organisieren sich spontan

Jens-Erik Dietrich und Takashi Hiiragi haben in ihrer Studie die Expressionsmuster von drei Faktoren (Oct4, Cdx2 und Nanog) untersucht. Diese sind im 8-Zell Stadium noch in allen Zellen zu finden. In der späten Blastozyste jedoch sind sie entweder nur in der inneren Zellmasse (Oct4 und Nanog), oder nur außen, im Trophektoderm (Cdx2) zu finden. Diese molekularen Fingerabdrücke haben Dietrich und Hiiragi benutzt, um den Mechanismus zu beobachten, durch den die Zellen sich im Embryo organisieren.

Auffällig war ein extrem variables Muster der Expressionslevel einiger der Faktoren (Nanog und Cdx2). Manche Zellen hatten viel, andere sehr wenig. Überraschend war die Willkürlichkeit der Variabilität. Weder die Position im frühen Embryo, noch eine gegenseitige Korrelation bestimmten das Muster. Um der Sache auf den Grund zu gehen, untersuchten Dietrich und Hiiragi, ob diese Prozesse in isolierten embryonalen Zellen genauso verlaufen wie im Embryo. Hierzu ließen Dietrich und Hiiragi einzelne Zellen aus dem 8-Zell-Stadium ein- oder zweimal teilen. Die Zellen produzierten entweder zwei gleich große Schwesterzellen oder zwei unterschiedliche, ein Phänomen das auf sogenannter symmetrischer bzw. asymmetrischer Zellteilung beruht. Nanog war in symmetrisch und asymmetrisch geteilten Zellen immer in gleicher Menge vorhanden. Es befand sich jedoch immer mehr Cdx2 in der größeren Zelle. Nach zwei Zellteilungen organisierten sich die entstandenen vier Zellen zu Mini-Blastozysten, in denen die Zellen, die außen lagen immer mehr Cdx2 hatten, als die im Inneren. "Hieraus schließen wir, dass die Art der Zellteilung das Cdx2 Niveau der Zellen reguliert, und dass das Proteinmuster dann bestimmt, wohin die Zelle sich bewegt", sagt Dietrich. Besonders interessant war für Dietrich und Hiiragi aber die Beobachtung, dass die Anzahl der Zellen eines Embryos, die eine asymmetrische Teilung durchlaufen, sehr variabel ist. "Anscheinend ist diese Variabilität in der Art der Zellteilung für die Blastozystenbildung unerheblich; die Musterbildungs-Prozesse sind so flexibel in ihrer Regulation, dass sich am Ende trotzdem immer eine Blastozyste bildet, die eben für die Einnistung erforderlich ist."

Diese Ergebnisse sprechen gegen die Annahme, dass jede Eizelle eine "Blaupause" für die weitere Entwicklung trägt. Dietrich und Hiiragi haben gezeigt, dass das molekulare Profil in den Zellen nach dem Zufallsprinzip etabliert wird. Danach wandern die Zellen dahin, wo ihr Programm sie diktiert. Aller Anfang scheint also zufällig. Dietrich fügt hinzu: "Zufall lässt sich aber schwer beweisen." Deswegen werden Dietrich und Hiiragi die Zellen weiter unter die Lupe nehmen, um ihr vorgeschlagenes Zwei-Phasen-Modell zu bekräftigen.

Originalveröffentlichung:

Jens-Erik Dietrich and Takashi Hiiragi
Stochastic patterning in the mouse pre-implantation embryo
Development 2007, doi 10.1242/dev.003798

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blastozyste Cdx2 Embryo Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten