Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fliegen fliegen mit beherzten Flügeln

12.12.2007
Die Fortschritte in der Genforschung erlauben der Evolutionsbiologie Einblicke in Entwicklungsvorgänge von Organismen, von denen man bis vor wenige Jahrzehnten nur träumen konnte.

Günther Pass und Markus Tögel von der Fakultät für Lebenswissenschaften an der Universität Wien erforschen die Entwicklung der Flügelkreislauforgane der Taufliege Drosophila melanogaster. Ziel ist es, jene genetischen Abläufe zu erforschen, die für die Entwicklung von Kreislauforganen und deren Funktion wichtig sind. Bereits nach einigen Monaten Forschung gibt es erste Ergebnisse.

Taufliegen sind jene lästigen winzigen Fliegen, die sich in unseren Obstschüsseln tummeln. Eine davon ist Drosophila melanogaster, die als Modellorganismus der Entwicklungsgenetik große Berühmtheit erlangt hat und als eines der am besten erforschten Lebewesen gilt. Jährlich erscheinen mehr als 4.000 Publikationen über Drosophila, und dennoch gibt es Organe bei dieser Insektenart, die nahezu unerforscht sind. Auch nach 100 Jahren intensiver Forschungen lässt sich bei Drosophila noch immer wissenschaftliches Neuland beschreiten.

Das erzählt Ao. Univ.-Prof. Dr. Günther Pass vom Department für Evolutionsbiologie. Er untersucht in einem im Juni begonnenen FWF-Projekt gemeinsam mit dem Doktoranden Mag. Markus Tögel und Univ.-Prof. Achim Paululat von der Universität Osnabrück die Flügelkreislauforgane bei Drosophila. Die Forschungen sollen zu einem besseren Verständnis darüber beitragen, wie Organe generell entstehen.

Jedes Herz am richtigen Fleck

Die Anatomie der Insekten ist verblüffend: Neben dem großen Hauptherz im Rücken gibt es mehrere kleine Herzen, die Körperanhänge wie Antennen, Beine oder Flügel mit Blut versorgen. Die Flügel der Insekten sind von Adern durchzogen, die mit Blut gefüllt sind. Damit die Zirkulation in den Flügeln funktioniert, haben sie eigene kleine Pumpen oder "Nebenherzen".

Evolution neuer Organe

"Urinsekten hatten noch keine Flügel", erklärt Günther Pass, "Flügel inklusive deren 'Herzen' sind also evolutionäre Innovationen, anhand derer sich gut untersuchen lässt, wie neue Organe überhaupt entstehen." Günther Pass geht davon aus, dass die Flügelzirkulationsorgane der Fruchtfliege aus Zellen bestehen, die während der Entwicklung der Individuen vom Gewebe des Herzens bezogen wurden. Diese Hypothese prüft das laufende Projekt, und sie kann bereits vorsichtig bestätigt werden. Allerdings gehen die Flügelkreislauforgane nicht direkt auf Herzzellen selbst zurück, sondern auf gemeinsame frühe Vorläuferzellen.

Leuchtende Methode

Im Rahmen des Projekts arbeiten die Evolutionsbiologen mit Prof. Dr. Achim Paululat von der Universität Osnabrück zusammen. In seiner Arbeitsgruppe wurde eine Zuchtlinie von Drosophila entwickelt, bei der die Herzzellen unter dem Fluoreszenzmikroskop stark leuchten, so dass man durch das lebende Tier hindurch die Herzbewegungen sehen kann. An diesen Fliegen lässt sich die Entwicklung der Kreislauforgane bis in den frühen Embryo zurückverfolgen. Darüber hinaus versuchen die Forscher in einem genetischen Ansatz in Mutationszuchtlinien Phänotypen zu finden, bei denen die Bildung oder Funktion der Flügelkreislauforgane verändert ist. An solchen Tieren lassen sich dann in weiterer Folge die Gene identifizieren, die für die Entwicklung der Flügelherzen verantwortlich sind.

Erste Ergebnisse

In den ersten Monaten des Projekts kam Markus Tögel bereits zu neuen Ergebnissen. Er erzeugte durch genetische Manipulation Fliegen, die keine Flügelherzen bilden beziehungsweise zerstörte in einem anderen Experiment die Flügelherzen mit Laserstrahlen. Beide Male waren die Flügel der Fliege daraufhin nicht mehr funktionsfähig - sie können ohne ihr "Herz" also nicht fliegen. Der Grund ist - wie Tögel herausfand -, dass die kleinen Pumpen bei der Entwicklung der Flügel eine wichtige Rolle spielen. Am Ende der Flügelbildung saugen sie nämlich die nicht mehr benötigten Hautzellen heraus. Ohne "Herz" verbleiben diese Hautzellen in den Flügeln, und diese sind dann zum Fliegen unbrauchbar.

Kontakt:
Ao. Univ.-Prof. Dr. Günther Pass
Universität Wien
Department für Evolutionsbiologie
1090 Wien, Althanstraße 14
T +43-1-4277-544 93
M +43-664-602 77-710 00
guenther.pass@univie.ac.at
Rückfragehinweis:
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexandra.frey@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at/175

Weitere Berichte zu: Drosophila Flügelherzen Flügelkreislauforgane Organ Pass

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie