Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viel versprechende Zellimplantation nach Herzinfarkt

06.12.2007
Wissenschaftlern der Universität Bonn ist zusammen mit US-Kollegen ein Aufsehen erregender Schritt in der Herzinfarkt-Forschung gelungen. In der kommenden Ausgabe der Zeitschrift "Nature" vom 6.12. berichten sie über ein Experiment, in dem sie Mäusen nach einem Infarkt embryonale Herzzellen einpflanzten. Die Versuchstiere waren danach vor lebensgefährlichen Herzrhythmusstörungen geschützt. Diese so genannten Kammertachykardien sind die häufigste Todesursache nach einem Herzinfarkt.

Bei einem Infarkt wird der Herzmuskel aufgrund der Mangeldurchblutung irreparabel geschädigt. Gefürchtete Folge sind die so genannten Kammertachykardien und das daraus resultierende Kammerflimmern. Dabei zieht sich der Hohlmuskel unkoordiniert und mit extrem hoher Schlagfolge zusammen. Die Frequenz kann mehr als 300 Schläge pro Minute erreichen. Dieser Zustand ist lebensgefährlich, weil das Blut nicht mehr effektiv durch den Kreislauf gepumpt wird.

Durch die Implantation embryonaler Herzmuskelzellen lässt sich dieses Risiko augenscheinlich drastisch reduzieren - zumindest bei Mäusen. So lautet der Befund von Wissenschaftlern der Universitäten Bonn, Cornell und Pittsburgh in der Zeitschrift Nature. Die Wissenschaftler hatten Mäusen nach einem Infarkt mit diesen Zellen behandelt und dann versucht, durch elektrische Reizung eine Kammertachykardie hervorzurufen. Nur bei gut jedem dritten Tier geriet das Herz ins Stolpern - genauso selten wie bei kerngesunden Nagern. Bei unbehandelten Mäusen nach Herzinfarkt lag diese Quote dagegen praktisch bei 100 Prozent.

Ein paar tausend Zellen reichen

Das abgestorbene Herzgewebe durch neue Muskelzellen zu ersetzen, ist keine ganz neue Idee. Bisher hatten die Ärzte dabei aber vor allem im Blick, die muskuläre Funktion wieder herzustellen. Schließlich gehen bei einem Infarkt viele hundert Millionen Muskelzellen zugrunde. Folge ist oft eine Herzinsuffizienz, die ebenfalls tödlich enden kann. "Diese Herzmuskelschwäche lässt sich mit Ersatzgewebe bis heute nicht beheben", erklärt Professor Bernd K. Fleischmann vom Institut für Physiologie 1. "Zu wenige implantierte Zellen übernehmen wirklich dauerhaft Muskelfunktion. Um Rhythmusstörungen zu verhindern, scheinen dagegen schon ein paar tausend Zellen auszureichen."

Mit den bislang für die Therapie genutzten Skelettmuskelzellen funktioniert das allerdings nicht. "Sie mindern nicht etwa die Gefahr einer Kammertachykardie - im Gegenteil: Die Schwere der Rhythmusstörungen nahm in unserer Studie sogar zu, wenn wir Skelettmuskelzellen verwendeten", betont der Bonner Kardiologe Professor Dr. Thorsten Lewalter.

Grund: Für eine geordnete Kontraktion ist es wichtig, dass die Zellen im Herzmuskel miteinander kommunizieren. Sie geben dazu gewissermaßen das "Schlagsignal" an ihre Nachbarn weiter. "Wirkliche" Herzmuskelzellen verfügen dazu von Natur aus über einen speziellen Kommunikationskanal. Dabei handelt es sich um ein Zelleiweiß namens Connexin 43. "Wir konnten zeigen, dass die von uns implantierten embryonalen Herzmuskelzellen dieses Connexin 43 bilden und darüber das elektrische Signal in die Infarktnarbe einkoppeln", erläutern der Herzchirurg Dr. Wilhelm Röll und der Physiologe Dr. Philipp Sasse.

Neuer Therapieansatz

Wissenschaftlern vom Institut für Genetik ist es gelungen, Skelettmuskel-Zellen derart zu verändern, dass sie ebenfalls Connexin 43 herstellen. Die Forscher testeten auch diese Zellen an Mäusen mit Herzinfarkt - mit Erfolg: Das Risiko einer Kammertachykardie sank auf ein ähnliches Niveau wie bei gesunden Tieren. Diese Entdeckung öffnet möglicherweise die Tür zu einem völlig neuen Therapieansatz. Beim Menschen ist es schließlich aus ethischen Gründen nicht einfach möglich, auf embryonale Herzmuskelzellen zurückzugreifen. "Man könnte aber Stammzellen aus dem Beinmuskel eines Infarktpatienten nehmen und darin das Gen für Connexin 43 einschleusen", sagt Professor Michael I. Kotlikoff von der Cornell-Universität in Ithaca. "Diese veränderten Zellen ließen sich dann in das geschädigte Herz implantieren." Abstoßungsreaktionen wären dabei nicht zu befürchten - schließlich würde es sich um eigene (wenn auch genetisch aufgerüstete) Zellen handeln. Auch Fleischmann spricht von einem wichtigen Zwischenschritt, warnt aber vor zu großen Hoffnungen: "Unsere Ergebnisse gelten für das Mausherz", stellt er klar. "Ob das beim Menschen ebenfalls so klappt, bleibt abzuwarten."

Dass die Studie so erfolgreich verlief, liegt auch an der Interdisziplinarität des Projekts: Allein in Bonn waren mit der Physiologie 1 am Life & Brain Zentrum, den Abteilungen für Herzchirurgie und Innere Medizin II sowie den Instituten für Genetik und Pharmakologie fünf Arbeitsgruppen beteiligt.

Kontakt:
Professor Dr. Bernd K. Fleischmann
Institut für Physiologie 1, Life&Brain-Zentrum, Universität Bonn
Telefon: 0228/6885-200
E-Mail: bernd.fleischmann@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Connexin Herzinfarkt Herzmuskelzelle Infarkt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI mit neuesten VR-Technologien auf der NAB in Las Vegas

24.04.2017 | Messenachrichten

Leichtbau serientauglich machen

24.04.2017 | Maschinenbau

Daten vom Kühlgerät in die Cloud

24.04.2017 | HANNOVER MESSE