Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellulärer Frachtverkehr: die Ladung hilft beim Bau der Lokomotive

05.12.2007
In jeder Zelle herrscht reger Frachtverkehr: Durch eine Vielzahl von Transportprozessen werden Zellkomponenten zielgenau an ihre jeweilige Wirkungsstätte transportiert. Motorproteine wirken dabei als zelluläre Lokomotiven. Ein Wissenschaftler-Team des GSF - Forschungszentrums für Umwelt und Gesundheit (GSF) und der Ludwig-Maximilians-Universität München (LMU) fanden nun heraus, dass das Frachtgut am Zusammenbau dieser Motoren beteiligt sein kann.

Wie das zelluläre Transportsystem aufgebaut ist, war bisher nur unzureichend untersucht. Bekannt ist jedoch, dass das zelluläre Skelett aus Aktin-Filamenten ein filigranes Schienennetz bildet, entlang dessen molekulare Motoren als "Lokomotive" ihre Fracht an den Bestimmungsort liefern. Zu den am besten untersuchten Motorproteinen gehören sogenannte Typ V Myosine. Zusammen mit weiteren Transportkomponenten formen sie große Komplexe, die mRNAs, sowie Organellen und Proteine an ihren Zielort bringen. Defekte der Typ V Myosine wurden beispielsweise als Ursache neurodegenerativer Erkrankungen und des "Griscelli-Syndroms" identifiziert - eine seltene, aber schwere Erbkrankheit, die auf einem gestörten Transport der Hautpigmente beruht .

Weitgehend unbekannt war bisher, wie sich die zelluläre Lokomotive und ihre Fracht zu einem funktionierenden Transportkomplex zusammenfinden. Dieser Frage widmete sich nun ein Forscherteam um Dr. Dierk Niessing (GSF) und Prof. Ralf-Peter Jansen (LMU): Die Wissenschaftler untersuchten, wie die Bäckerhefe Transportkomplexe zusammenbaut, um ihre zelluläre Fracht mit Hilfe des Typ V Myosins Myo4p zu transportieren.

Vorherige Experimente mit Typ V Myosinen deuteten bereits darauf hin, dass dieser Motortyp grundsätzlich Dimere bildet, d.h. zwei Myosine sind miteinander verbunden[RJ2]. Dies ist notwendig, um entlang der Aktinfilamente zu wandern - ansonsten könnten die Motorproteine nicht dauerhaft an den Filamenten haften und jede Vorwärtsbewegung würde zum Entgleisen des zellulären Güterzugs führen. "Die Situation ist vergleichbar mit einem Mensch, der sich mit Saugnäpfen entlang einer glatten Oberfläche bewegt. Mit nur einem Saugnapf kann man sich zwar festhalten, aber nicht fortbewegen", erläutert Niessing, der Leiter einer von GSF, LMU und der Helmholtz-Gemeinschaft gemeinsam finanzierten wissenschaftlichen Nachwuchsgruppe.

Die Forscher waren daher sehr überrascht, als sie feststellten, dass Myo4p überhaupt nicht dimerisiert - ein solcher Einzelgänger sollte eigentlich keine zelluläre Fracht transportieren können. Damit es doch funktioniert, bekommt Myo4p Hilfe: das zu transportierende Molekül She3p aus dem Transportkomplex dockt an zwei unabhängigen Stellen an Myo4p an, wodurch eine Bindung mit so hoher Affinität und Stabilität erreicht wird, wie sie für Transportprozesse notwendig ist. "Der zu transportierende Komplex hilft somit beim Zusammenbau des Motors und übernimmt eine ungewöhnliche Schlüsselposition bei der Regulation des Myo4p-abhängigen Transportes", erklärt Niessing, und Jansen hebt hervor: "es bleibt eine spannende Frage zu klären, ob in anderen Transportvorgängen ähnliche Strategien zur Aktivierung des Motors verfolgt werden."

Publikation: Alexander Heuck, Tung-Gia Du, Stephan Jellbauer, Klaus Richter, Claudia Kruse, Sigrun Jaklin, Marisa Müller, Johannes Buchner, Ralf-Peter Jansen, Dierk Niessing: "Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes"; PNAS December 11, 2007, 105, 19778-19783

Weitere Informationen:

GSF - Forschungszentrum für Umwelt und Gesundheit
Heinz-Jörg Haury, Leiter der Abteilung Kommunikation:
Tel: 089 3187-2460
Fax 089 3187-3324
E-Mail: oea@gsf.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de/neu/Aktuelles/Presse/2007/frachtverkehr.php

Weitere Berichte zu: Fracht Frachtverkehr LMU Lokomotive Myo4p Myosine Transportkomplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie