Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlechte Gesangsschüler

04.12.2007
Wissenschaftler schalten das Gen FOXP2 bei Zebrafinken stumm und kriegen was zu hören

Dass der Mensch Worte und Sätze bilden kann, verdankt er seinem Gehirn. Komplexe Netzwerke aus Nervenzellen weisen Worten Bedeutung zu und steuern Mund, Zunge und Kehlkopf. Das Gen FOXP2 ist offenbar für die korrekte Ausbildung und Funktion dieser Schaltkreise notwendig, denn Personen mit defektem FOXP2 haben Artikulationsstörungen und es mangelt ihnen auch am grammatikalischen Verständnis. Was der Trankriptionsfaktor FOXP2 jedoch genau reguliert, konnten die Wissenschaftler bislang nicht zeigen.


Männliche Zebrafinken (rechts und Mitte), bei denen das Gen FOXP2 stumm geschaltet wurde, lernten schlechter singen. Bild: Max-Planck-Gesellschaft


Schlechte Gesangsschüler: Der Gesang der Zebrafinken mit stummem FoxP2-Gen (unten) unterscheidet sich von demjenigen ihrer Lehrer (oben). Viele Silben (durch schwarze Unterstriche und Buchstaben angezeigt) ähneln sich nicht. Außerdem lässt der Schüler manche Silben aus. Bild: Scharff et al., PloS

Das Lernverhalten von Singvögeln gilt als Modell für den menschlichen Spracherwerb. Ein Forscherteam, dem auch Max-Planck-Wissenschaftler angehören, hat deshalb FOXP2 bei jugendlichen Zebrafinken stumm geschaltet. Die Vögel lernten daraufhin schlechter singen. Das Experiment ist das erste, das einen kausalen Zusammenhang zwischen einem Gendefekt und dem korrekten Erwerb von Lautäußerungen nachweist. (PLoS Biology Online, 4. Dezember 2007)

Die menschliche Sprache ist ein Gemeinschaftsprodukt. Bestimmte Gehirnschaltkreise weisen Worten Bedeutungen zu. Andere verknüpfen sie zu sinnvollen Sätzen. Dritte wiederum sorgen dafür, dass die Zunge und der Mund diesen Sätzen Klang verleihen. Das alles lernt der Mensch in seiner Kindheit, indem er anderen zuhört und sie imitiert. Es gibt Hinweise, dass das Gen FOXP2 diese Prozesse beeinflusst. Die Frage ist allerdings, wie.

... mehr zu:
»FOXP2 »Gen »Vögel »Zebrafinken

FOXP2 wurde erstmals 2001 bei den Mitgliedern einer Familie mit einer auffälligen Sprachstörung entdeckt. Diese hatten Schwierigkeiten bei der Artikulation. Ursache ist eine Mutation im FOXP2-Gen, das für einen Transkriptionsfaktor kodiert. Transkriptionsfaktoren steuern die Ableserate anderer Gene und beeinflussen somit, welche Proteine die Zelle produziert.

"FOXP2 ist auch im jugendlichen Vogelgehirn aktiv", sagt Constance Scharff, die diese Forschung als Arbeitsgruppenleiterin am Max-Planck-Institut für molekulare Genetik begann und inzwischen Professorin an der Freien Universität Berlin ist. Es kommt dort vor allem im Areal X vor, einem Bereich, der bei Jungvögeln für das Lernen von Gesang notwendig ist. Der entsprechende Bereich liegt bei Menschen in den sogenannten Basalganglien. Die Vögel eignen sich als Modell für den Spracherwerb beim Menschen und könnten möglicherweise helfen, die Rolle von FOXP2 genauer zu entschlüsseln. Denn Zebrafinken lernen Gesänge, die der menschlichen Sprache ähneln: Sie bestehen aus unterschiedlichen Silben, die strukturierte Reihenfolgen ergeben. Auch der Lernvorgang ist bei Vögeln und Menschen ähnlich. Beide eignen sich ihre Lautfolgen an, indem sie ältere Artgenossen imitieren.

In ihren Experimenten schalteten die Forscher daher das FOXP2-Gen mittels RNA-Interferenz in Teilen des Areal X im Vogelhirn stumm. Dazu führten sie dort komplementäre kurze RNA-Stückchen in die Zellen ein. Diese fangen die Boten-RNA, eine Abschrift des Gens, auf ihrem Weg zu den Proteinfabriken ab, und verhindern so die Produktion des Proteins. "Wir haben jeden Zebrafinken dann zusammen mit einem erwachsenen Zebrafinken-‚Tutor’ in einem schallisolierten Käfig gehalten", erklärt Scharffs Mitarbeiter Sebastian Haesler. Nach etwa 70 Tagen gaben Vögel mit intaktem FOXP2 die Gesänge der älteren Artgenossen exakt wieder. "Zebrafinken, bei denen das Gen stumm geschaltet worden war, imitierten die Silben ihrer Lehrer weniger präzise", sagt Haesler. Zudem ließen sie Silben aus.

Genau solche Symptome zeigen auch die vom FOXP2-Defekt betroffenen Personen. "Wir wissen zwar immer noch nicht, was FOXP2 genau macht", sagt Scharff. So könnte der Gendefekt zum Beispiel motorische Funktionen wie die Kehlkopfbewegung oder das Abspeichern der zu lernenden Gesänge beeinträchtigen. "Wir vermuten jedoch, dass er die zellulären Mechanismen des Lernens beeinflusst." Dies muss jetzt näher untersucht werden. Mit dem gelungenen erstmaligen Einsatz der RNA-Interferenz bei Vögeln haben Scharff und ihre Kollegen auf jeden Fall die Tür für die funktionelle Genanalyse bei Vögeln geöffnet.

Originalveröffentlichung:

Haesler, S.; Rochefort, C.; Georgi, B.; Licznerski, P.; Osten, P.; Scharff, C.
Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X

PLoS Biology, Online, 4. Dezember 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: FOXP2 Gen Vögel Zebrafinken

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie