Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in poröse Nanostrukturen - Gezielte Freigabe von Medikamenten im Körper denkbar

30.11.2007
Mesoporöse Nanostrukturen versprechen wahre Universalgenies zu werden: So sollen etwa winzige Kügelchen mit noch winzigeren Poren Medikamente an die richtige Stelle im Körper transportieren und dort gezielt freisetzen.

Damit sich diese Materialien aber auch genau so verhalten, wie man es von ihnen erwartet, muss man möglichst genau verstehen, wie sie von innen aussehen und wie sich zum Beispiel Moleküle von Arzneimitteln wie etwa Proteine in ihnen bewegen.

Mit einer Kombination von Einzelmolekülfluoreszenzmessungen und Elektronenmikroskopie gelang einem Wissenschaftlerteam um Professor Christoph Bräuchle und Professor Thomas Bein, Department Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München, im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich (NIM)" und "Center for Integrated Protein Science Munich (CiPSM)" ein dazu wichtiger Schritt. Wie in der aktuellen Ausgabe der Fachzeitschrift "Nature" berichtet, konnten sie erstmals die lokale Struktur von mesoporösen Nanostrukturen und die Bewegung von Molekülen in solchen Strukturen miteinander korrelieren.

Als Katalysator für chemische Reaktionen werden poröse Strukturen schon jetzt kommerziell eingesetzt. Zudem aber entstehen in Kanälen von wenigen Nanometern Dicke Nanodrähte, die als Bausteine für die Sensorik der Zukunft dienen sollen. Nicht zuletzt sind der gezielte Transport und die Freigabe von therapeutischen Substanzen im Körper denkbar. Ein wichtiger Fortschritt auf dem Weg zum Verständnis ist nun dem LMU-Forscherteam gelungen, indem sie zwei Methoden kombinierten: Die Struktur eines nanoporösen Festkörpers nahmen sie mit einem Transmissionselektronenmikroskop auf. Die Wege einzelner fluoreszierender Moleküle darin bildeten sie aber mittels optischer Mikroskopie ab und überlagerten anschließend beide Bilder mit einer Genauigkeit von wenigen 10 Nanometern. Diese Methode eröffnet neue Wege zum Verständnis der realen porösen Struktur mit all ihren auffälligen und versteckten Defekten, sowie deren Einfluss auf die Bewegungen der eingeschlossenen Moleküle.

... mehr zu:
»Molekül »Nanostrukturen »Protein

Materialien mit periodisch geordneten Poren im Nanometerbereich, insbesondere mesoporöse Feststoffe mit Porendurchmessern von zwei bis 50 Nanometern, können eine Vielzahl verschiedener Strukturen annehmen. Zur Herstellung nutzt man dabei die Selbstorganisation oberflächenaktiver Moleküle ("Template"). Das funktioniert ähnlich wie bei Seifenmolekülen in Wasser. Diese ordnen sich von selbst in so genannten Mizellen an, winzigen Kügelchen, die sich an ihrer Oberfläche mit dem Wasser verbinden und in ihrem Inneren Fette aufnehmen können. Molekulare Bausteine lagern sich um diese Template herum und bilden durch Vernetzung einen Festkörper, der mit templatgefüllten Hohlräumen durchzogen ist. Diese Hohlräume können die Form von Kugeln, Kanälen oder auch von Schichten haben. Das kann zum Beispiel so aussehen wie ein Bündel Makkaroni. Aufgrund ihrer über weite Bereiche hinweg modifizierbaren Eigenschaften sind diese porösen Materialien ideale Strukturen ("Wirte") für eine Fülle von Anwendungen, etwa in der Katalyse, für die geschützte Aufnahme von Proteinen und die gezielte Freisetzung von Arzneimitteln oder als Matrix für die Herstellung von superdünnen Drähten für die Nanoelektronik.

Da die Anordnung der Poren und Gänge in diesen Materialien besonders die Bewegungen von Molekülen innerhalb des Systems beeinflusst, ist es von großem Interesse, das Verhalten dieser Moleküle mit der lokalen Struktur des Wirtssystems zu korrelieren. Diese Bewegungen lassen sich zum Beispiel mit Hilfe der Einzelmolekülfluoreszenzmikroskopie beobachten, die bereits detaillierte Einblicke in die Dynamik verschiedenster biologischer Vorgänge in Zellen bis hin zur heterogenen Katalyse geben konnte. Einzelne fluoreszierende Farbstoffmoleküle kann man sich als leuchtende Sonden vorstellen, mit denen man die Diffusionsprozesse im Inneren poröser Wirte verfolgen kann. Aus den Wegen der Moleküle lassen sich dann Rückschlüsse auf die Struktur des porösen Wirtsmaterials ziehen.

Die Einzelmolekülmikroskopie liefert dabei zwar eine deutlich höhere Auflösung als die konventionelle optische Mikroskopie, nämlich bis zu wenigen Nanometern. Durch das Verfolgen einzelner Moleküle kann man aber nur indirekt die Kanalsysteme beobachten, in die das Molekül eindringen kann. Die Transmissionselektronenmikroskopie, deren Auflösung noch höher ist - sie liegt im atomaren Bereich - ist dagegen in der Lage, die gesamte Struktur abzubilden. Sie liefert jedoch keinerlei dynamische Informationen über die Bewegung der Gastmoleküle. Daher war es bis jetzt nicht möglich, die Diffusion einzelner Moleküle mit der realen nanoporösen Struktur ihrer Umgebung zu korrelieren.

Gemeinsam gelang nun den Arbeitsgruppen um Professor Christoph Bräuchle und Professor Thomas Bein die Kombination von Einzelmolekülfluoreszenzmessungen und elektronenmikroskopischen Aufnahmen an derselben Position innerhalb einer mesoporösen Struktur. Die Forscher zeigen, wie einzelne leuchtende Farbstoffmoleküle durch geradlinige oder stark gekrümmte Bereiche eines mesoporösen Kanalsystems wandern, wie sie an Domänengrenzen oder am Übergang zu amorphen Gebieten zur Umkehr gezwungen werden, und sogar wie sie durch Defektstellen in der Wand von einem Kanal zum nächsten schlüpfen können. Außerdem konnten in verschiedenen Bereichen der Wirtsstruktur unterschiedliche Diffusionsgeschwindigkeiten nachgewiesen werden - abhängig von der vorherrschenden Struktur.

Der neue experimentelle Ansatz liefert den Forschern detaillierte Informationen über die reale Defektstruktur poröser Materialien mit einer hohen räumlichen Auflösung, die mit herkömmlichen Beugungsmethoden nicht erreicht werden kann, da diese immer einen Mittelwert über größere Bereiche hinweg abbilden. Ebenso erhalten sie auf diese Weise lokal aufgelöste dynamische Informationen in Echtzeit, die mit konventionellen Diffusionstechniken ebenfalls nicht erzielt werden können. Die Forscher erwarten von dieser neuen Methode detaillierte Einblicke in die reale Struktur und Dynamik vieler poröser Materialien und wichtiger Wirt-Gast Systeme, beispielsweise von bioaktiven Molekülen in porösen Materialien für den zielgerichteten Transport von Arzneimitteln, von Reaktionspartnern in porösen Katalysatoren, oder bei der Herstellung von Nanodrähten für die Sensorik von morgen.

Die aktuell in Nature vorgestellten Arbeiten entstanden im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" und "Center for Integrated Protein Science Munich", die es sich zum Ziel gesetzt haben, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen.

Publikation:
"Visualizing single-molecule diffusion in mesoporous materials", Andreas Zürner, Johanna Kirstein, Markus Döblinger,

Christoph Bräuchle & Thomas Bein, Nature 2007, Vol. 450; S. 705-708, 29. November 2007

Ansprechpartner:
Professor Dr. Christoph Bräuchle
Department Chemie und Biochemie der LMU
Tel.: 089 / 2180 - 77549
Fax: 089 / 2180 - 77550
E-Mail: christoph.bräuchle@cup.uni-muenchen.de
Professor Dr. Thomas Bein
Department Chemie und Biochemie der LMU
Tel.: 089 / 2180 - 77623
Fax: 089 / 2180 - 77622
E-Mail: bein@lmu.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Tel.: 089 / 2180 - 5091
Fax: 089 / 2180 - 5649
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Molekül Nanostrukturen Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kein Gen ist eine Insel
25.07.2017 | Institute of Science and Technology Austria

nachricht Symbiose - Fettversorgung für Pilze
25.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Breitbandlichtquellen mit flüssigem Kern

25.07.2017 | Physik Astronomie

Symbiose - Fettversorgung für Pilze

25.07.2017 | Biowissenschaften Chemie

Europas demografische Zukunft

25.07.2017 | Studien Analysen