RUB-Neuroinformatik: Das Gehirn lernt nie aus

  • Das Gehirn lernt nie aus
  • Lernvorgänge beeinflussen das Seh-System
  • PNAS berichtet: Erwachsenes Gehirn ändert seine Grundstruktur

Wie Lernvorgänge die Struktur der Sehrinde im erwachsenen Gehirn verändern, konnten die Hirnforscher PD Dr. Hubert Dinse (Institut für Neuroinformatik der RUB), Dr. Ben Godde (Universität Tübingen) und ihre Mitarbeiter Dr. Sven Cords und Dr. Ralph Leonhardt jetzt an Katzen nachweisen: Durch die Kombination von Elektrostimulation der Gehirnzellen und Videobeobachtung des Blutflusses im Gehirn zeigten sie, dass sich die sog. Orientierungskarten im Seh-System durch Lernprozesse in ihrer Grundstruktur verändern. Die renommierte Zeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) berichtet in ihrer aktuellen Ausgabe über die Ergebnisse.

Auch das erwachsene Gehirn verändert sich noch

Noch vor einigen Jahren glaubten Wissenschaftler, dass die Gehirnzellen, die für Bewegung und Wahrnehmung verantwortlich sind, im erwachsenen Gehirn unveränderlich miteinander vernetzt seien. Inzwischen zeigte sich aber, dass sich die Organisation und Funktion unseres Gehirns lebenslang an äußere oder krankheitsbedingte Veränderungen anpasst: Gebrauch, Training und Lernen verändern unsere motorischen Leistungen und Wahrnehmungsfähigkeiten. Bei diesen Vorgänge verändert sich bis ins hohe Alter die primäre Hirnrinde. Umstritten war bisher, inwieweit dies auch für das visuelle System gilt, und welche Bedeutung diese Veränderungen für die Informationsverarbeitung im Gehirn haben.

Winzige Ströme verändern die synaptische Übertragung

Um bei Katzen Lernvorgänge auszulösen, stimulierten die Forscher über eine Mikroelektrode die Gehirn-Nervenzellen der narkotisierten Tiere mit winzigen Strömen (intrakortikale Mikrostimulation, ICMS). Diese Ströme aktivieren in einem sehr kleinen Bereich des Hirngewebes viele Nervenzellen gleichzeitig. Dadurch verändert sich die Reizübertragung zwischen den Nervenzellen zunächst nur für wenige Sekunden, bei wiederholter synchroner Aktivierung dauerhaft.

Veränderungen funktioneller Karten

Die fürs Sehen verantwortlichen Hirnbereiche höherer Säugetiere enthalten eine systematische Repräsentation des Gesichtsfelds – wie eine Landkarte. Benachbarte Nervenzellen stellen dort benachbarte Orte im Gesichtsfeld dar. Es überlagern sich im Gehirn verschiedene sog. funktionelle Karten, die bestimmte Reizparameter wie Orientierung, Bewegungsrichtung und Kontrast repräsentieren. Das bestuntersuchte Beispiel sind die sog. Orientierungskarten, die alle möglichen Ausrichtungen eines visuellen Reizes nahezu gleichmäßig verteilt darstellen.

Video-Kameras beobachten des Gehirn bei der Arbeit

Zur experimentellen Untersuchung solcher Karten nutzten die Forscher die „optische Registrierung“. Sie basiert auf dem Zusammenhang zwischen der Aktivität der Nervenzellen und dem Energieverbrauch. Werden bestimmte Hirnbereiche aktiviert, ändert sich dort die Durchblutung, um den erhöhten Sauerstoffverbrauch zu decken. Die mit diesen Vorgängen verbundenen winzigen Änderungen in der Helligkeit des Hirngewebes können die Forscher mit hochempfindlichen Video-Kameras direkt messen. Nach computergestützter Auswertung lässt sich aus den Messergebnissen die räumliche Erregungsverteilung über einen Bereich von mehreren Millimetern errechnen und darstellen. Führt man diese Prozedur für viele unterschiedliche Reize durch und stellt die Ergebnisse in einer gemeinsamen Karte dar, entsteht ein umfassendes Bild der Orientierungskarte im Gehirn.

Kleine Bereiche reizen – große verändern

Zentrales Ergebnis der Hirnforscher: Bereits nach wenigen Stunden der Stimulation verändern die Orientierungskarten ihre Grundstruktur. Betroffen sind davon Bereiche von mehreren Millimetern, obwohl die elektrischen Reize auf weniger als 0,1 Millimeter beschränkt waren (Abbildung). Die Ursache für diese weitreichenden Auswirkungen vermuten die Wissenschaftler im Bauprinzip des visuellen Systems im Gehirn. Hier findet sich ein dichtes und sehr verzweigtes Netzwerk horizontaler Nervenfasern, die sich über viele Millimeter erstrecken können. Die Forscher gehen davon aus, dass sie bei der Reizverarbeitung eine wichtige Rolle spielen. Orientierungen, die am ICMS-Ort repräsentiert waren, vergrößerten ihr Repräsentationsgebiet auf Kosten anderer. Bemerkenswert ist die Tatsache, dass diese Veränderungen nicht durch Training ausgelöst wurden, sondern durch lokale elektrische Stimulation, die ihrerseits keinerlei „Bedeutung“ (Reizspezifität) besitzt. Durch die ICMS kommen Selbstorganisationsprozesse in Gang, die zu geordneten und spezifischen Veränderungen führten.

Besonderheiten des Seh-Systems

Besonders interessant an den Beobachtungen der Tübinger und Bochumer Forscher ist, dass sich die Veränderungen im visuellen System in mehreren Eigenschaften von denen in anderen Arealen unterscheiden, die ebenfalls mit der ICMS verändert wurden: Die Effekte sind zum einen räumlich erheblich weitreichender. Zum anderen konnten die Wissenschaftler sie nur in eingeschränktem Maße vollständig rückgängig machen. Dies könnte darauf hindeuten, dass der visuelle Kortex zwar veränderbar ist wie andere Areale auch, sich aber in der spezifischen Ausbildung dieser Eigenschaft unterscheidet.

Hirnverletzungen behandeln

Auch krankhafte Veränderungen des Gehirns, z. B. als Folge von Verletzungen, können als Lernprozesse aufgefasst werden und führen zu einer Reorganisation der betroffen Hirnbereiche. Das Verständnis dieser Mechanismen ist deshalb besonders bedeutsam für Fragen der Rehabilitation und Regeneration nach Schädigungen des Zentralnervensystems. Die neuen Funde können somit auch als Basis für Untersuchungen bei Patienten dienen, die durch Verletzung der Augen oder des visuellen Kortex erblindet sind. Möglicherweise lassen sich in Zukunft auf dieser Grundlage auch neue Therapieansätze für Rehabilitationsmaßnahmen entwickeln, die auf Trainings- oder Stimulationsprotokollen basieren.

Titelaufnahme

Ben Godde, Ralph Leonhardt, Sven M. Cords, and Hubert R. Dinse: Plasticity of orientation preference maps in the visual cortex of adult cats, PNAS 2002 Vol 99: 6352-6357, 

Weitere Informationen

PD Dr. Hubert R. Dinse, Institut für Neuroinformatik der Ruhr-Universität, 44780 Bochum, Tel: 0234/32-25565, Fax: 0234/32-14209, E-Mail: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de
Dr. Ben Godde, AG Kortikale Reorganisation und Lernen, Institut für Medizinische Psychologie & Verhaltensneurobiologie, Eberhard-Karls-Universität, Gartenstrasse 29, 72074 Tübingen, Tel: 07071/29-74220, Fax: 07071/29-5956, E-Mail: benjamin.godde@uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer