Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Neuroinformatik: Das Gehirn lernt nie aus

02.05.2002


  • Das Gehirn lernt nie aus
  • Lernvorgänge beeinflussen das Seh-System
  • PNAS berichtet: Erwachsenes Gehirn ändert seine Grundstruktur

Wie Lernvorgänge die Struktur der Sehrinde im erwachsenen Gehirn verändern, konnten die Hirnforscher PD Dr. Hubert Dinse (Institut für Neuroinformatik der RUB), Dr. Ben Godde (Universität Tübingen) und ihre Mitarbeiter Dr. Sven Cords und Dr. Ralph Leonhardt jetzt an Katzen nachweisen: Durch die Kombination von Elektrostimulation der Gehirnzellen und Videobeobachtung des Blutflusses im Gehirn zeigten sie, dass sich die sog. Orientierungskarten im Seh-System durch Lernprozesse in ihrer Grundstruktur verändern. Die renommierte Zeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) berichtet in ihrer aktuellen Ausgabe über die Ergebnisse.

Auch das erwachsene Gehirn verändert sich noch

Noch vor einigen Jahren glaubten Wissenschaftler, dass die Gehirnzellen, die für Bewegung und Wahrnehmung verantwortlich sind, im erwachsenen Gehirn unveränderlich miteinander vernetzt seien. Inzwischen zeigte sich aber, dass sich die Organisation und Funktion unseres Gehirns lebenslang an äußere oder krankheitsbedingte Veränderungen anpasst: Gebrauch, Training und Lernen verändern unsere motorischen Leistungen und Wahrnehmungsfähigkeiten. Bei diesen Vorgänge verändert sich bis ins hohe Alter die primäre Hirnrinde. Umstritten war bisher, inwieweit dies auch für das visuelle System gilt, und welche Bedeutung diese Veränderungen für die Informationsverarbeitung im Gehirn haben.

Winzige Ströme verändern die synaptische Übertragung

Um bei Katzen Lernvorgänge auszulösen, stimulierten die Forscher über eine Mikroelektrode die Gehirn-Nervenzellen der narkotisierten Tiere mit winzigen Strömen (intrakortikale Mikrostimulation, ICMS). Diese Ströme aktivieren in einem sehr kleinen Bereich des Hirngewebes viele Nervenzellen gleichzeitig. Dadurch verändert sich die Reizübertragung zwischen den Nervenzellen zunächst nur für wenige Sekunden, bei wiederholter synchroner Aktivierung dauerhaft.

Veränderungen funktioneller Karten

Die fürs Sehen verantwortlichen Hirnbereiche höherer Säugetiere enthalten eine systematische Repräsentation des Gesichtsfelds - wie eine Landkarte. Benachbarte Nervenzellen stellen dort benachbarte Orte im Gesichtsfeld dar. Es überlagern sich im Gehirn verschiedene sog. funktionelle Karten, die bestimmte Reizparameter wie Orientierung, Bewegungsrichtung und Kontrast repräsentieren. Das bestuntersuchte Beispiel sind die sog. Orientierungskarten, die alle möglichen Ausrichtungen eines visuellen Reizes nahezu gleichmäßig verteilt darstellen.

Video-Kameras beobachten des Gehirn bei der Arbeit

Zur experimentellen Untersuchung solcher Karten nutzten die Forscher die "optische Registrierung". Sie basiert auf dem Zusammenhang zwischen der Aktivität der Nervenzellen und dem Energieverbrauch. Werden bestimmte Hirnbereiche aktiviert, ändert sich dort die Durchblutung, um den erhöhten Sauerstoffverbrauch zu decken. Die mit diesen Vorgängen verbundenen winzigen Änderungen in der Helligkeit des Hirngewebes können die Forscher mit hochempfindlichen Video-Kameras direkt messen. Nach computergestützter Auswertung lässt sich aus den Messergebnissen die räumliche Erregungsverteilung über einen Bereich von mehreren Millimetern errechnen und darstellen. Führt man diese Prozedur für viele unterschiedliche Reize durch und stellt die Ergebnisse in einer gemeinsamen Karte dar, entsteht ein umfassendes Bild der Orientierungskarte im Gehirn.

Kleine Bereiche reizen - große verändern

Zentrales Ergebnis der Hirnforscher: Bereits nach wenigen Stunden der Stimulation verändern die Orientierungskarten ihre Grundstruktur. Betroffen sind davon Bereiche von mehreren Millimetern, obwohl die elektrischen Reize auf weniger als 0,1 Millimeter beschränkt waren (Abbildung). Die Ursache für diese weitreichenden Auswirkungen vermuten die Wissenschaftler im Bauprinzip des visuellen Systems im Gehirn. Hier findet sich ein dichtes und sehr verzweigtes Netzwerk horizontaler Nervenfasern, die sich über viele Millimeter erstrecken können. Die Forscher gehen davon aus, dass sie bei der Reizverarbeitung eine wichtige Rolle spielen. Orientierungen, die am ICMS-Ort repräsentiert waren, vergrößerten ihr Repräsentationsgebiet auf Kosten anderer. Bemerkenswert ist die Tatsache, dass diese Veränderungen nicht durch Training ausgelöst wurden, sondern durch lokale elektrische Stimulation, die ihrerseits keinerlei "Bedeutung" (Reizspezifität) besitzt. Durch die ICMS kommen Selbstorganisationsprozesse in Gang, die zu geordneten und spezifischen Veränderungen führten.

Besonderheiten des Seh-Systems

Besonders interessant an den Beobachtungen der Tübinger und Bochumer Forscher ist, dass sich die Veränderungen im visuellen System in mehreren Eigenschaften von denen in anderen Arealen unterscheiden, die ebenfalls mit der ICMS verändert wurden: Die Effekte sind zum einen räumlich erheblich weitreichender. Zum anderen konnten die Wissenschaftler sie nur in eingeschränktem Maße vollständig rückgängig machen. Dies könnte darauf hindeuten, dass der visuelle Kortex zwar veränderbar ist wie andere Areale auch, sich aber in der spezifischen Ausbildung dieser Eigenschaft unterscheidet.

Hirnverletzungen behandeln

Auch krankhafte Veränderungen des Gehirns, z. B. als Folge von Verletzungen, können als Lernprozesse aufgefasst werden und führen zu einer Reorganisation der betroffen Hirnbereiche. Das Verständnis dieser Mechanismen ist deshalb besonders bedeutsam für Fragen der Rehabilitation und Regeneration nach Schädigungen des Zentralnervensystems. Die neuen Funde können somit auch als Basis für Untersuchungen bei Patienten dienen, die durch Verletzung der Augen oder des visuellen Kortex erblindet sind. Möglicherweise lassen sich in Zukunft auf dieser Grundlage auch neue Therapieansätze für Rehabilitationsmaßnahmen entwickeln, die auf Trainings- oder Stimulationsprotokollen basieren.

Titelaufnahme

Ben Godde, Ralph Leonhardt, Sven M. Cords, and Hubert R. Dinse: Plasticity of orientation preference maps in the visual cortex of adult cats, PNAS 2002 Vol 99: 6352-6357, 

Weitere Informationen

PD Dr. Hubert R. Dinse, Institut für Neuroinformatik der Ruhr-Universität, 44780 Bochum, Tel: 0234/32-25565, Fax: 0234/32-14209, E-Mail: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de
Dr. Ben Godde, AG Kortikale Reorganisation und Lernen, Institut für Medizinische Psychologie & Verhaltensneurobiologie, Eberhard-Karls-Universität, Gartenstrasse 29, 72074 Tübingen, Tel: 07071/29-74220, Fax: 07071/29-5956, E-Mail: benjamin.godde@uni-tuebingen.de

Dr. Josef König | idw
Weitere Informationen:
http://www.pnas.org/content/vol99/issue9/#NEUROBIOLOGY
http://www.neuroinformatik.ruhr-uni-bochum.de/PROJECTS/ENB/enb_d.html
http://homepages.uni-tuebingen.de/benjamin.godde/index.html

Weitere Berichte zu: Hirnbereiche ICMS Nervenzelle Reize

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen