Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unüberwindbare Grenzen - auch für biologische Zellen

26.11.2007
Plasmaverfahren ermöglicht schnelle und intelligente Lösung für die Zellkulturdiagnostik

Chemische Mikrostrukturen auf Kunststoffoberflächen werden in der Biomedizin von morgen eine entscheidende Rolle spielen, z.B. für die Untersuchungen zu genetischen Veränderungen von Zellen.

Eine wissenschaftliche Herausforderung ist dabei insbesondere die Schaffung intelligenter Lösungen für die schnellere Zellkulturdiagnostik bedingt durch den immer kleiner werdenden Raum auf den Biochips. Diese Anforderung wird zusätzlich durch den Anspruch verstärkt viele parallele und unterschiedliche Diagnostiken in den so genannten "Zellspots" gleichzeitig durchzuführen.

Forschern des Leibniz-Institutes für Plasmaforschung und Technologie (INP Greifswald e.V.) ist es zusammen mit der Firma zell-Kontakt nun erstmalig gelungen, mit Hilfe eines plasmagestütztes Verfahrens, unterschiedlich chemisch funktionalisierte und klar voneinander abgegrenzte Oberflächenareale auf engstem Raum zu erzeugen. Zentrale Bereiche, welche die Ansiedlung eines Zellrasens für die Gentests ermöglichen, sind jeweils von einer Zone umgeben, die für die biologischen Zellen eine unüberwindliche Grenze bildet. Somit wird ein Überwachsen der Zellen in Nachbarstrukturen wirksam unterbunden und die parallele Durchführung einer Vielzahl unterschiedlicher Tests auf der Fläche eines Chips ist möglich. Der Nachweis solcher chemischer Mikrostrukturen auf Materialoberflächen ist nur mit Spezialmethoden möglich, denn unter dem Mikroskop bleiben sie verborgen. Eine davon ist die Elektronenspektroskopie für die Chemische Analyse (ESCA). Bereiche unterschiedlicher atomarer Zusammensetzung lassen sich selbst für Abmessungen von 10 µm (1 µm = 1/1000 mm) hiermit sichtbar machen.

Dazu misst ESCA Elektronen, die mittels Röntgenstrahlung aus den Materialien herausgelöst werden und Rückschlüsse auf die chemischen Bindungsverhältnisse auf der Materialoberfläche erlauben. INP Projektleiter Dr. Karsten Schröder "Unsere Messungen zeigen, dass sich die chemischen Eigenschaften der verschieden behandelten Areale deutlich voneinander unterscheiden lassen und darüber hinaus scharfe Übergänge aufweisen." Die Ergebnisse wurden jetzt in Brüssel der internationalen Fachwelt vorgestellt und sollen in innovative Zellkulturprodukte umgesetzt werden.

Das INP Greifswald erforscht Niedertemperatur-Plasmen für technische Anwendungen. Ziel ist einerseits die technologische Vorlaufforschung und andererseits die Optimierung etablierter Plasmaverfahren und Plasmaprodukte sowie die Erforschung neuer Plasmaanwendungen. Dies wird ergänzt durch die Anpassung von Plasmen an kundenspezifische Einsatzbedingungen sowie Machbarkeitsstudien, Serviceleistungen und Beratung.

Das INP betreibt Forschung und Entwicklung von der Idee bis zum Prototyp, wobei sich die Themen an den Bedürfnissen der Gesellschaft orientieren. Derzeit stehen die Biomedizintechnik, Oberflächentechnologie, Umwelttechnik, Spezial-Plasmaquellen, Modellierung und Diagnostik im Mittelpunkt des Interesses.

Das INP verfügt über 3700 qm Hauptnutzfläche, hat 25 Speziallabore sowie einen klassifizierten Reinraum und ein mikrobiologisches Labor für interdisziplinäre Forschung.

Das INP gehört zur Leibniz-Gemeinschaft und ist als gemeinnütziger Verein organisiert. Derzeit beschäftigt das INP etwa 130 Mitarbeiter und ist damit die größte außeruniversitäre Einrichtung auf diesem Forschungsgebiet in Europa.

Im Verbund mit dem Institut für Physik an der Ernst-Moritz-Arndt-Universität (IfP) und dem Max-Planck-Institut (IPP) besteht die Aufgabe des INP in der Förderung der Plasmatechnologie, in der Verbindung von Grundlagen und Industrieforschung.

Aus dem INP wurde in den Jahren 2005 und 2006 bereits je eine Firma ausgegründet.

Die Firma zell-kontakt GmbH aus Nörten-Hardenberg entwickelt, produziert und vertreibt analytische Zellkulturgefäße für die Grundlagenforschung und die angewandte pharmakologische Forschung. Ein besonderer Fokus liegt auf Produkten, die anspruchsvolle Mikroskopieverfahren unterstützen. Derartige Mikroskopieverfahren

Liane Glawe | idw
Weitere Informationen:
http://www.inp-greifswald.de/

Weitere Berichte zu: Diagnostik INP Zellkulturdiagnostik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics