Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was uns schnell schalten lässt

16.11.2007
Verkannte Proteine steuern die zuverlässige Signalübertragung in Nervenzell-Netzwerken

Die Kommunikation zwischen Nervenzellen erfolgt über chemische Botenstoffe, die in kleine Bläschen, die Vesikel, verpackt werden. Um zuverlässig reagieren zu können, müssen Nervenzellen eine bestimmte Menge "akut freisetzbarer" Vesikel bereithalten. Wäre das nicht der Fall, würde die Signalübertragung zwischen Nervenzellen schnell ermüden.


Elektrophysiologische Messkurven zeigen, dass Nervenzellen ohne CAPS-Proteine (unten) einer Stimulation mit hoher Frequenz viel schlechter folgen können als Wildtyp-Nervenzellen (die roten und gelben Punkte sind Synapsen, die Zellkörper sind jeweils links oben im Bildausschnitt zu sehen). Bild: MPI für experimentelle Medizin

Besonders Prozesse, die von einer schnellen Informationsvermittlung abhängen, kämen zum Erliegen, und lebenswichtige Fähigkeiten wie etwa das Sehen oder die schnelle Ortung einer Schallquelle wären unmöglich. Neurowissenschaftler des Max-Planck-Instituts für experimentelle Medizin in Göttingen haben nun herausgefunden, dass CAPS-Proteine, die bisher nur für ihre Rolle bei der langsamen Ausschüttung von Hormonen bekannt waren, auch die schnelle Informationsweiterleitung in Nervenzell-Netzwerken des Gehirns steuern (Cell, 16. November 2007).

Nervenzellen kommunizieren miteinander an spezialisierten Zell-Zell-Kontakten, den Synapsen. Wird eine sendende Nervenzelle erregt, so schüttet sie Botenstoffe, so genannte Neurotransmitter aus. Diese werden aus kleinen, von Membranen umhüllten Bläschen, den synaptischen Vesikeln, freigesetzt, gelangen dann zur Empfängerzelle und beeinflussen deren Aktivitätszustand. Die Freisetzung der Botenstoffe erfolgt durch Verschmelzen der Vesikel mit der Zellmembran, ein Prozess, der das Zusammenspiel verschiedener Proteine erfordert.

Ein Blick durch das Mikroskop offenbart, dass es unterschiedliche Populationen von Vesikeln gibt: Vesikel mit einem gewissen Abstand zur Plasmamembran bilden einen Reserve-Pool. Bei Bedarf können sie aktiv zur Plasmamembran überführt und dort verankert werden. Doch noch können sie nicht mit der Plasmamembran fusionieren, dazu müssen sie erst fusionsfähig gemacht werden. Den entsprechenden biochemischen Prozess bezeichnen die Wissenschaftler als "Priming". Erst diese vorbereiteten Vesikel bilden den so genannten "Release Ready Pool", sind also akut freisetzbar. Eigentlich galt der "Priming"-Prozess als aufgeklärt.

Doch tatsächlich haben die Wissenschaftler dabei bislang eine bestimmte Sorte Proteine übersehen, wie Nils Brose und seine Mitarbeiter Wolf Jockusch und JeongSeop Rhee vom Max-Planck-Institut für experimentelle Medizin in Göttingen herausfanden. Die Neurowissenschaftler hatten genetisch veränderte Mäuse erzeugt, denen alle bekannten CAPS-Gene fehlen, und mussten zu ihrer eigenen Überraschung feststellen, dass die entsprechenden Proteine für das "Priming" synaptischer Vesikel absolut notwendig sind. "Ohne CAPS-Proteine gibt es keine akut freisetzbaren Vesikel in Nervenzellen und die Signalübertragung kommt zum Stillstand", sagt Brose. Und sein koreanischer Kollege JeongSeop Rhee gibt zu: "Niemand hatte die CAPS-Proteine als Regulatoren der synaptischen Transmitterfreisetzung auf der Rechnung, auch wir nicht. Es galt vielmehr als sicher, dass diese Proteine mit der eigentlichen Synapsenfunktion nichts zu tun haben."

Bei der Entdeckung der Göttinger Neurowissenschaftler handelt es sich nicht bloß um ein akademisches Problem von Grundlagenforschern, denn "die Zahl der akut freisetzbaren Vesikel einer Synapse entscheidet über deren Zuverlässigkeit", so Wolf Jockusch. Gibt es zu wenige akut freisetzbare Vesikel und werden diese zudem noch zu langsam nachgeliefert, ermüdet die entsprechende Synapse bei dauerhafter Belastung sehr schnell. Wird im Gegensatz dazu zu schnell zu viel Botenstoff freigesetzt, so kann das verheerende Folgen haben, eine davon sind Epilepsien.

Aus diesem Grund interessieren sich inzwischen auch Pharmaunternehmen für synaptische Regulatorproteine wie CAPS. "Sollte es gelingen", so Brose, "die Aktivität dieser Proteine pharmakologisch zu regulieren, wovon wir ausgehen, dann wären ganz neue Epilepsie-Therapien möglich, die viele der Nebenwirkungen umgehen, unter denen aktuelle Therapieverfahren leiden."

Originalveröffentlichung:

Jockusch, W., Speidel, D., Sigler, A., Sørensen, J., Varoqueaux, F., Rhee, J.-S. und Brose, N.
CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins
Cell, 16. November 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE