Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine menschliche Bittergeschmackszelle gleicht der anderen

14.11.2007
Forscher liefern erstmals molekularbiologische Belege für ein umstrittenes Erklärungsmodell der Geschmackswahrnehmung

Ein Forscherteam um Wolfgang Meyerhof vom Deutschen Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE) zeigt erstmals, dass keine menschliche Bittergeschmackszelle der anderen gleicht. Jede ist mit einem anderen Satz von vier bis elf Bitterrezeptoren ausgestattet. Das heißt, jede Geschmackszelle kann nur einige Bitterstoffgruppen erkennen und nicht - wie lange angenommen - alle. Damit liefern die Wissenschaftler zum ersten Mal auf molekularer Ebene Belege für ein umstrittenes Erklärungsmodell der Geschmackswahrnehmung. Die Forscher veröffentlichten heute ihre Ergebnisse in der Online-Ausgabe der angesehenen Fachzeitschrift The Journal of Neuroscience (Behrens, M. et al. 2007).

Seit längerem diskutieren Wissenschaftler darüber, wie der Bittergeschmack wahrgenommen wird und ob der Mensch zwischen verschiedenen Bitterstoffen unterscheiden kann. Die bislang an Nagern gewonnenen Daten sind widersprüchlich und führten zu zwei Erklärungsmodellen:

Das erste Modell geht davon aus, dass keine Unterschiede beim Bittergeschmack wahrgenommen werden können. Denn molekularbiologische Untersuchungen an Tieren führten zu der Annahme, dass sich Bittergeschmackszellen hinsichtlich ihrer Rezeptorausstattung nicht oder nur wenig unterscheiden. Das würde bedeuten, dass jeder Bitterstoff jede Bittergeschmackszelle gleichermaßen stimulieren kann.

Das zweite Modell geht davon aus, dass verschiedene Bitterstoffe unterschiedlich wahrgenommen werden können. Es basiert auf den Ergebnissen physiologischer Untersuchungen. Diese zeigten, dass Bittergeschmackszellen unterschiedlich auf den Kontakt mit Bitterstoffen reagieren und dass diese Aktivitätsunterschiede ins Gehirn übertragen werden.

Die nun erstmals an menschlichen Zellen durchgeführten Experimente der DIfE-Forscher untermauern das zweite Erklärungsmodell. "Unsere Daten haben zwar derzeit keinen praktischen Nutzen, sie tragen aber wesentlich zum Verständnis der Mechanismen bei, die der Geschmackswahrnehmung zu Grunde liegen. Nur wenn wir diese Mechanismen kennen, lassen sich die Zusammenhänge zwischen Geschmacksempfinden, Ernährung und Gesundheit aufklären", erklärt Maik Behrens, Erstautor der Studie. In der Welt der Geschmacksforschung sind noch viele Fragen unbeantwortet. Bis heute weiß man beispielsweise nicht, warum einige Menschen den bitteren Geschmack von Chicoree oder Pampelmusen mögen, während andere ihn ablehnen.

Hintergrundinformation:

Von allen fünf Grundgeschmacksqualitäten süß, umami, sauer, salzig und bitter ist der Bittergeschmack der vielschichtigste. Tausende von verschiedenen Bitterstoffen werden von einer hierzu vergleichsweise geringen Anzahl von 25 Bitterrezeptorproteinen wahrgenommen, die an den Spitzen der Bittergeschmackszellen sitzen. Allgemein gilt, dass die Bitterrezeptoren vor dem Verzehr giftiger Stoffe warnen. Man findet sie auf der Zunge, aber auch im Bereich des Gaumens, des Rachens und des Kehlkopfs. Bereits 2005 und 2006 hatten Ergebnisse der Arbeitsgruppe um Meyerhof gezeigt, dass die Wahrnehmung des Bittergeschmacks eine wichtige Rolle während der menschlichen Evolution spielte.

Unabhängig vom Geschmackssystem finden sich einige Bitterrezeptoren auch im Atmungs- und Verdauungssystem. Welche Funktion sie hier erfüllen, ist nicht geklärt.

In großen Teilen der Gesellschaft ist bekannt, wie eine gesunde Ernährung aussehen sollte. Paradoxerweise hat dieses Wissen in der täglichen Praxis die tatsächliche Ernährungsweise aber kaum beeinflusst: Bevorzugt wird eine wenig sättigende, kalorienreiche Kost, die das Entstehen von Übergewicht begünstigt. Die Forschung des DIfE konzentriert sich deshalb auch auf die biologischen Mechanismen, die eine Vorliebe für bestimmte Lebensmittel bewirken.

Das Deutsche Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE) ist Mitglied der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und forschungsnahe Serviceeinrichtungen. Diese beschäftigen etwa 13.700 Mitarbeiterinnen und Mitarbeiter (Stand 12/2006). Davon sind ca. 5.400 Wissenschaftler (inkl. 2.000 Nachwuchswissenschaftler). Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Sie sind von überregionaler Bedeutung und werden von Bund und Ländern gemeinsam gefördert. Der Gesamtetat der Institute liegt bei mehr als 1,1 Mrd. Euro pro Jahr. Die Drittmittel betragen etwa 225 Mio. Euro pro Jahr. Näheres unter http://www.leibniz-gemeinschaft.de.

Kontakt:

Professor Dr. Wolfgang Meyerhof
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
E-Mail: meyerhof@dife.de
Tel: +49(0)33200 88 282/556
Dr. Maik Behrens
DIfE
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
E-Mail: behrens@dife.de
Tel: +49(0)33200 88 374/545
Dr. Gisela Olias
Presse- und Öffentlichkeitsarbeit
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke
Arthur-Scheunert-Allee 114-116
14558 NuthetalTel.: +49(0)33 200-88 278/335
Fax: +49(0)33 200-88 503
E-Mail: olias@dife.de

Dr. Gisela Olias | idw
Weitere Informationen:
http://www.leibniz-gemeinschaft.de
http://www.dife.de/de/presse/jpg/Pampelmuse3.jpg
http://www.dife.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics