Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach dem Generalschlüssel

13.11.2007
Zu verstehen, wie Hormone funktionieren, damit man sie beeinflussen kann - das ist das zentrale wissenschaftliche Interesse von Thomas Müller. Seit August ist der 41-jährige Chemiker Professor für Molekulare Pflanzengenetik am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik des Julius-von-Sachs-Instituts der Universität Würzburg.

In seiner Forschung geht es Professor Müller insbesondere darum, Strukturen von Proteinen und Protein-Protein Komplexen aufzuklären - bevorzugt mit Hilfe der Röntgenbeugung oder Kernresonanz-Spektroskopie. Und indem sie die Erkenntnisse über die Raumstruktur mit funktionellen Studien wie zum Beispiel der Messung des Zusammenwirkens mit anderen Proteinen - der Mutagenese - verknüpfen, versuchen Müller und seine Kollegen die molekularen Mechanismen zu erhellen, mit denen Proteine beispielsweise Signale in die Zellen leiten oder Enzyme ihr Substrat in das gewünschte Produkt umsetzen.

Der Hintergrund ist folgender: Während man früher - der "Schlüssel-Schloss-Hypothese" von Emil Fischer folgend - davon ausging, dass Proteine aufgrund von geometrischen Gegebenheiten möglichst nur einen einzigen Bindepartner erkennen können, weiß man heute, dass vor allem Proteinhormone häufig an mehrere unterschiedliche Rezeptoren binden, umgekehrt auch ein Rezeptor sehr häufig mehr als nur ein Hormon binden kann.

Dadurch versteht man nun, "warum sich meistens gar nichts ändert, oder zumindest nicht in die gewünschte Richtung, wenn man nur ein Hormon beeinflusst", erklärt Müller: "Das heißt, man muss sich das Zusammenwirken der Hormone eher als Netzwerk denn als kausale Kette vorstellen. Und wenn man verstehen würde, wie ein Generalschlüssel funktioniert, könnte man ihn auch nachbauen. Dann wären gezielte Eingriffe in Signalketten möglich."

Bisher hat sich Thomas Müller in seiner Arbeit vor allem auf die Proteinfamilien der Zytokine und Knochenwachstumsfaktoren konzentriert. In Zukunft sollen jedoch ähnliche Beispiele in der Pflanzenwelt untersucht werden. Auch hier sind eine Reihe von Rezeptoren, zum Beispiel in der Pflanzen-Immunabwehr, in der Lage, unterschiedliche Pathogen-Liganden zu binden und somit zu detektieren. Hier will man klären, ob sich für pflanzliche Proteine ähnliche Mechanismen für Protein-Protein-Interaktionen entwickelt oder ob sich neuartige Wechselwirkungsmuster ausgebildet haben.

Müller hat in Würzburg Chemie studiert und wurde hier 1995 am Theodor-Boveri-Institut für Biowissenschaften promoviert. Nach Forschungsaufenthalten unter anderem am Max-Planck-Institut für Biochemie in Martinsried, an den European Molecular Biology Laboratories (EMBL) (Heidelberg) und an der University of California in Los Angeles, war er von 2001 bis 2007 wissenschaftlicher Assistent am Lehrstuhl für Physiologische Chemie II und Leiter der Abteilung Strukturbiologie. Seit Ende 2006 ist er auch Mitglied des Rudolf-Virchow-Zentrums.

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Generalschlüssel Hormon Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics