Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Feinmechanik von Glutamatrezeptoren: RUB-Forscher untersuchen molekulare Schalter

08.11.2007
RUB-Forscher untersuchen molekulare Schalter
Erforscht: Feinmechanik von Glutamatrezeptoren
Publikation im Journal of Neuroscience

Damit Signale zwischen Nervenzellen weitergeleitet werden können, besitzen die Zellen verschiedene Rezeptoren, die bei Kontakt mit bestimmten Botenstoffen Ionenkanäle öffnen und schließen können. Rezeptoren für Glutamat besitzen zur Öffnung ihres integrierten Ionenkanals ein Scharnier, dessen Feingängigkeit ihre Schalterfunktion bei der Signalweiterleitung entscheidend reguliert.

Neurowissenschaftler der Ruhr-Universität Bochum (Lehrstuhl für Biochemie I - Rezeptorbiochemie, Prof. Dr. Michael Hollmann) haben die Feinmechanik von Glutamatrezeptoren untersucht: Sie vertauschten die verschiedenen Bauteile des Rezeptors untereinander, um ihre Funktion besser zu verstehen. Die Teile wirken als Gelenk zusammen, dessen Stellung über den Öffnungszustand des Ionenkanals entscheidet. "Genau die beiden Gelenkteile, über die bisher am wenigsten bekannt ist, beeinflussen die Funktion der Rezeptoren am deutlichsten", fasst Mitautorin Sabine Schmid die Ergebnisse zusammen. Die Studie ist in der aktuellen Ausgabe des "Journal of Neuroscience" veröffentlicht.

Wichtiges Scharnier

Glutamatrezeptoren bestehen aus einer Erkennungsstelle für Glutamat, in die der Botenstoff genau hineinpasst, und aus einem Kanal in der Zelloberfläche, der sich öffnen und schließen kann. Wie bei einer Mausefalle schnappt die Erkennungsstelle für Glutamat zu, sobald der Botenstoff bindet. Diese Bewegung löst dann die Öffnung des Kanals aus, wodurch außen angestaute positive Ladungsträger in die Zelle einströmen können und damit ein elektrisches Signal erzeugen. Dabei sind Glutamaterkennungsstelle und Kanal über einen ausgeklügelten, dreiteiligen Gelenkmechanismus miteinander verbunden. Über einen der drei Gelenkteile ist bekannt, dass kleinste Veränderungen bereits enorme Fehlfunktionen zur Folge haben. So ist bei einer krankhaften Mutation in Mäusen dieser Gelenkteil so verändert, dass der Kanal ständig geöffnet ist, egal ob Glutamat vorhanden ist oder nicht. Dies blockiert jede normale Signalweiterleitung und führt zum Absterben der Nervenzellen.

Auf das Zusammenspiel kommt es an

Die genaue Struktur des Gelenks und insbesondere das Zusammenspiel aller drei Teile sind weitgehend unbekannt. Zudem sind diese Gelenke in den vier verschiedenen Glutamatrezeptortypen, die es gibt, sehr verschieden aufgebaut. In der jetzt veröffentlichten Studie haben die Forscher die einzelnen Gelenkteile zwischen verschiedenen Glutamatrezeptoren ausgetauscht, um die Grundlagen ihrer Funktion und Vielseitigkeit besser zu verstehen. Tatsächlich konnten sie feststellen, dass genau die beiden Gelenkteile, über die bisher am wenigsten bekannt ist, die Funktion der Rezeptoren entscheidend beeinflussen. Die Veränderung eines dieser Gelenkteile führt ähnlich wie bei der Mausmutation zu ständig geöffneten Kanälen, die Veränderung des anderen zum kompletten Verlust der Kanalfunktion. Kombiniert man beide Veränderungen, so erhält man interessanterweise wieder einen normal funktionierenden Rezeptor. "Wir glauben, hier zwei Teile des Gelenks identifiziert zu haben, auf dessen Zusammenspiel es entscheidend ankommt. Sind sie zu schwergängig, kann sich der Kanal nicht mehr öffnen, sind sie zu leichtgängig, ist der Kanal ständig offen", folgert Sabine Schmid.

Voraussetzung zur Entwicklung von Medikamenten

Die genaue Erforschung solcher feinmechanischer Prinzipien in Glutamatrezeptoren ist Vorraussetzung, will man krankhafte Veränderungen in der Signalweiterleitung verstehen und durch Medikamente gezielt eingreifen. Die drei Gelenkteile sind in dieser Hinsicht besonders interessant, weil sie sehr typisch für die vier verschiedenen Glutamatrezeptortypen sind, und somit die Entwicklung von Medikamenten ermöglichen könnten, die gezielt nur einen einzelnen Rezeptortyp ansprechen - eine wichtige Vorraussetzung, um Stoffe zu entwickeln, die keine negativen Nebenwirkungen haben.

Hintergrund: Signalweiterleitung im Gehirn

Im Gehirn entsteht unsere Gedankenwelt durch die Verschaltung elektrischer Signale in einem gigantischen Netzwerk aus rund 100 Milliarden Nervenzellen. Dabei stehen die einzelnen Nervenzellen nicht in direktem elektrischen Kontakt miteinander, sondern ein winziger Spalt trennt sie. Signale, die von einer Zelle zur anderen weitergeleitet werden sollen, müssen diesen Spalt überbrücken. Dies geschieht an speziellen Kontaktstellen, den so genannten Synapsen, wo die Signalweiterleitung mit Hilfe eines chemischen Botenstoffes erreicht wird. Die elektrisch erregte Nervenzelle schüttet den Botenstoff aus, dieser wandert durch den Spalt, und wird von der Empfängerzelle aufgespürt. Sehr häufig ist der benutzte Botenstoff im Gehirn die Aminosäure Glutamat. Spezialisierte molekulare Schalter in der Oberfläche der Empfängerzelle, die so genannten Glutamatrezeptoren, registrieren die Anwesenheit von Glutamat im Spalt und übersetzen dieses chemische wieder in ein elektrisches Signal. Glutamatrezeptoren spielen eine so zentrale Rolle in unserem Gehirn, dass das genaue Verständnis ihrer Feinmechanik unabdingbar ist, wollen die Forscher verstehen, wie Nervenzellen sie nutzen, um Botschaften zu verschlüsseln.

Titelaufnahme

Schmid SM, Körber C, Herrmann S, Werner M, Hollmann M.: "A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated." In: Journal of Neuroscience 2007 Nov. 7; 27(45): 12230-12241.

Weitere Informationen

Prof. Dr. Michael Hollmann, Sabine Schmid, Biochemie I - Rezeptorbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24225, E-Mail: sabine.schmid@rub.de, michael.hollmann@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten