Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Lebensqualität bei Mukoviszidose - Forscher entwickeln neue Behandlungsmethoden

07.11.2007
Endlich frei atmen - ein Wunsch vieler Mukoviszidose-Patienten, denn sie leiden an Symptomen wie Atemnot und chronischem Husten, aber auch an einer gestörten Verdauung.

Mit nur etwa 30 Jahren haben die Betroffenen eine deutlich herabgesetzte durchschnittliche Lebenserwartung. An der WWU Münster entwickeln Biologen unter der Leitung von Prof. Dr. Wolf-Michael Weber vom Institut für Tierphysiologie neue Behandlungsstrategien, um die Lebensqualität der Patienten zu verbessern.

Mukoviszidose führt unter anderem dazu, dass die Zellen, die unsere Lungen auskleiden, nicht mehr richtig arbeiten. Beim gesunden Menschen scheiden diese Zellen Wasser in den Lungeninnenraum ab - es entsteht ein Schleim, der die Bronchien benetzt. "Dieser Schleim wird mitsamt Staub- und Schmutzpartikeln permanent von den Flimmerhärchen auf den Bronchien nach außen befördert und schließlich abgehustet oder unbemerkt geschluckt", erklärt Prof. Weber. Bei Mukoviszidose-Patienten funktioniert dieser Selbstreinigungsmechanismus nicht, da der Wasserhaushalt der Drüsenzellen im Körper gestört ist. Bei ihnen ist der Schleim so zäh, dass er die Bronchien verstopft.

Der Wassertransport der gesunden Zellen ist komplex: Es gibt Kanäle in der Zellwand, die Wasser aus der Zelle über einen speziellen Mechanismus nach außen transportieren und andere, die Wasser in die Zelle aufnehmen. Bei gesunden Menschen hat der Schleim in der Lunge daher genau die richtige Konsistenz. Ein Defekt in dem so genannten CFTR-Kanal ("Cystic Fibrosis Transmembrane Conductance Regulator"), der für den Wassertransport aus der Zelle in den Lungeninnenraum verantwortlich ist, ist die häufigste Ursache für Mukoviszidose: Wird zu wenig Wasser nach außen transportiert, wird der Schleim in der Lunge zäh.

Der funktionsunfähige Kanal ist das Ergebnis eines Gendefekts. Kinder, die von beiden Eltern eine defekte Kopie des CFTR-Gens erben, erkranken an Mukoviszidose. Trägt jemand nur eine schadhafte Kopie, erkrankt er nicht selbst, kann das defekte Gen aber an seine Nachkommen weitergeben. "Mukoviszidose ist innerhalb der weißen Bevölkerung die häufigste Erbkrankheit", so Prof. Weber. In Deutschland leiden rund 8000 Menschen an der Erkrankung.

Die Forscher verfolgen zwei Strategien, um den zähen Schleim zu verflüssigen. Zum einen wollen sie mit einer neuen Behandlungsmethode die Funktion des defekten CFTR-Kanals wiederherstellen. Darüber hinaus verhindern sie, dass in den Zellen ein anderer Kanal, der "ENaC-Kanal" ("epithelialer Natriumkanal"), zusammengebaut wird. "Der ENaC-Kanal ist ein Gegenspieler des CFTR-Kanals. Er transportiert Wasser von der Zelloberfläche nach innen. Bei Mukoviszidose-Patienten führt das dazu, dass der ohnehin schon zähe Schleim noch zäher wird", erklärt Prof. Weber. Allein ein überaktiver ENaC-Kanal kann bereits Mukoviszidose-Symptome verursachen, selbst wenn sein Gegenspieler normal arbeitet.

Um den CFTR-Kanal und damit den Wassertransport in Richtung Lunge wieder herzustellen, wollen die Forscher spezifische mRNA-Moleküle in die Zellen an der Lungenoberfläche einschleusen. In der Zelle haben mRNA-Moleküle die Aufgabe, Kopien bestimmter Abschnitte der Erbinformation aus dem Zellkern in die Zelle zu bringen, wo sie abgelesen und die entsprechenden Proteine zusammengebaut werden. "Wir wollen gesunde Kopien der mRNA in die Zellen einschleusen, damit die Zellen funktionsfähige Kanäle aufbauen können. Zusätzlich wollen wir auf diesem Weg bestimmte Enzyme in die Zelle einbringen, die die vorhandene defekte Erbinformation reparieren", erklärt Prof. Weber.

Die Forscher haben bestimmte Transportpartikel aus Polyethylenglycol ("PEGs") entwickelt, die über die Zellmembran aufgenommen und ins Zellinnere geschleust werden und dabei die mRNA in die Zelle transportieren. Im Innern der Zelle angelangt, geben die PEGs die mRNA frei. Das Projekt führen die Münsteraner gemeinsam mit Kollegen der Ludwig-Maximilians-Universität München, der Berliner Charité und des Fraunhofer-Institut in Potsdam durch. Das Bundesministerium für Bildung und Forschung fördert die Arbeit der Wissenschaftler mit insgesamt 1,5 Millionen Euro.

Die zweite Strategie der münsterschen Forscher dreht sich um den ENaC-Kanal, der dem Schleim Wasser entzieht. Um den Zusammenbau dieses Kanals in der Zelle zu verhindern, bringen die Wissenschaftler so genannte Antisense-Oligonukleotide (AONs) in die Zellen ein. Die AONs verhindern in Zellkultur, dass ENaC-Kanäle aufgebaut werden. Demnächst wollen die Forscher in Kooperation mit Kollegen des Universitätsklinikums Giessen und Marburg testen, ob das Verfahren auch im menschlichen Organismus wirkt. Unterstützt wird das Projekt von der Deutschen Förderungsgesellschaft zur Mukoviszidoseforschung (Rhede).

Prof. Weber will die Mukoviszidoseforschung gemeinsam mit Kollegen aus der Medizin intensivieren: Zusammen mit Privatdozentin Dr. Barbara Kahl vom Institut für Medizinische Mikrobiologie und Prof. Dr. Peter Prehm vom Institut für Physiologische Chemie und Pathobiochemie will er an der WWU ein interdisziplinäres Mukoviszidose-Netzwerk gründen - damit die Patienten eines Tages frei atmen können.

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.uni-muenster.de/Biologie.Zoophysiologie/electrophys/ElectroHome.htm
http://www.cftr-gen.de/html/content/view.php?page=home&layout=www-cftr-gen-de&lang=de&language=de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics