Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Kristalle aus der "Schnellen Welle"

06.11.2007
Karlsruher Wissenschaftler nutzen Ionische Flüssigkeiten und Mikrowellen zur Herstellung von Nanopartikeln

"Man nehme Zinn- und Indiumchlorid, gebe es in einen Topf mit Ionischer Flüssigkeit und erhitze das Ganze in der Mikrowelle." Was wie die jüngste Kreation der Chemieküche klingt, beschreibt ein neues Verfahren, um elektrisch leitende Nanopartikel aus Indium-Zinn-Oxid (ITO: Indium Tin Oxide) schnell und einfach zu synthetisieren. Ohne aufwändige Zwischenschritte produziert Professor Claus Feldmann vom Karlsruher Institut für Technologie (KIT) damit gleichförmige und regelmäßige, zehn bis fünfzehn Nanometer (1 Nanometer = 1 Millionstel Millimeter) große Kristalle, die nicht verklumpen und sich leicht in wässrigen Medien dispergieren lassen. Diese Nanokristalle können mit konventionellen Techniken als unsichtbare Elektroden auf transparente, flexible oder hitzeempfindliche Materialien aufgedruckt werden. Mit der inzwischen patentierten "Ein-Topf-Mikrowellen-Synthese" in Ionischen Flüssigkeiten stellt Feldmann aber auch andere nanoskalige Partikel wie etwa lumineszierende Materialien her, die im sichtbaren Licht transparent sind, unter UV-Licht aber farbig leuchten.

Nanopartikel, die sich als transparente, nur wenige Nanometer dicke stromleitende oder leuchtende Schichten auftragen lassen, werden in Leuchtdioden und Solarzellen, zur Sicherheitsmarkierung oder für dekorative Zwecke eingesetzt. Um besonders gleichmäßige Kristalle ohne Defekte in ihrer Gitterstruktur zu gewinnen, sind üblicherweise hohe Temperaturen (bis 600 °C) erforderlich. Zusätzlich beigemischte Substanzen, die die neu gebildeten Partikel wie eine Nussschale umschließen, können verhindern, dass diese sich zu größeren Aggregaten zusammenballen. "Allerdings ist die Synthese aufwändig und einige Zusatzstoffe sind toxisch. Nanopartikel für therapeutische oder diagnostische Anwendungen in der Medizin kann man damit nur schwer synthetisieren", erläutert Feldmann.

Um diese Nachteile zu umgehen, nutzt der Chemiker am DFG-Centrum für Funktionelle Nanostrukturen des KIT sogenannte Ionische Flüssigkeiten als Lösungsmittel. Sie bestehen ausschließlich aus großen Kationen und Anionen, sind also ein wasserfreies, nicht-kristallines Salz. Sie sind bei Temperaturen zwischen - 50 und + 400 Grad Celsius flüssig und dabei chemisch stabil. Da sie kaum mit den gelösten Partikeln in Wechselwirkung treten, lassen sie sich bei der Aufreinigung der Produkte leicht entfernen. Diese Eigenschaft hat allerdings einen Nachteil: Neu gebildete Partikel werden nicht von einem Mantel aus Lösungsmittel-Molekülen umhüllt, der den Kontakt untereinander verhindert. Erhitzt man das Gemisch auf konventionelle Art, bilden sich daher wegen des Temperaturgefälles innerhalb der Lösung größere Komplexe, die sich anschließend nicht mehr trennen lassen. Hier kommt die "schnelle Welle" ins Spiel: Im Mikrowellenofen wird die Probe in Sekunden gleichmäßig im ganzen Gefäß erhitzt und so die Aggregation der Partikel verhindert.

"Die ersten Versuche haben wir tatsächlich mit einem einfachen Hauhaltsgerät durchgeführt", erinnert sich Feldmann. Inzwischen benutzt er aber eine spezielle Labor-Mikrowelle, in der er die Reaktionslösung rühren und ihre Temperatur messen kann. Bis zur industriellen Nutzung seines Syntheseverfahrens ist es allerdings noch ein langer Weg. Denn noch sind Ionische Flüssigkeiten, die bisher kaum technisch angewendet werden, relativ teuer. Die Preise würden aber mit steigender Nachfrage sinken, ist sich Feldmann sicher. Außerdem könnten die flüssigen Salze nach der Synthese wieder verwendet werden. Chemieunternehmen wie die Evonik Degussa GmbH setzen bereits auf die neue Methode und kooperieren eng mit dem Karlsruher Chemiker, dessen Arbeiten zudem von den Ländern Baden-Württemberg und Nordrhein-Westfalen, der Europäischen Union und der Deutschen Forschungsgemeinschaft unterstützt werden.

Literatur:

One-pot Synthesis of Highly Conductive ITO Nanocrystals. G. Bühler, D. Thölmann, C. Feldmann, Adv. Mater. 19, 2224 (2007).

Mikrowellen-unterstützte Synthese lumineszierender LaPO4:Ce,Tb-Nanokristalle in Ionischen Flüssigkeiten. G. Bühler, C. Feldmann, Angew. Chem. 118, 4982 (2006).

Das Karlsruher Institut für Technologie (KIT) ist der Zusammenschluss zwischen der Universität Karlsruhe und dem Forschungszentrum Karlsruhe. Gemeinsam arbeiten hier 8000 Beschäftigte mit einem jährlichen Budget von 600 Millionen Euro. Im KIT bündeln beide Partner ihre wissenschaftlichen Fähigkeiten und Kapazitäten, richten die dafür optimalen Strukturen für Forschung, Lehre und Innovation ein und entwickeln gemeinsame Strategien und Visionen.

Mit KIT entsteht eine Institution international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften. KIT soll Attraktionspunkt für die besten Köpfe aus der ganzen Welt werden, neue Maßstäbe in Lehre und Nachwuchsförderung setzen und das führende europäische Zentrum in der Energieforschung bilden. Im Bereich der Nanowissenschaften will KIT eine weltweit führende Rolle einnehmen. Ziel von KIT ist es, einer der wichtigsten Kooperationspartner für die Wirtschaft zu sein.

Klaus Rümmele | idw
Weitere Informationen:
http://www.kit.edu

Weitere Berichte zu: Flüssigkeit KIT Nanometer Nanopartikel Partikel Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie