Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photochemische Reaktionen im Computer berechnen

22.04.2002


  • Bits und Bytes statt Bunsenbrenner
  • "Physical Review Letters" berichtet über neuen Algorithmus

Chemische Reaktionen, die durch Wärmezufuhr angeregt werden, können Wissenschaftler seit langem im Computer ablaufen lassen. Dr. Nikos Doltsinis und Prof. Dr. Dominik Marx (Lehrstuhl für Theoretische Chemie der RUB) ist es nun erstmals gelungen, diese Methode auch auf die komplizierteren photochemischen Reaktionen anzuwenden. Sie entwickelten dazu einen Algorithmus, der mehrere elektronische Zustände berücksichtigt. Die Zeitschrift "Physical Review Letters" berichtet in ihrer Ausgabe vom 22. April 2002 über die Ergebnisse.

Energiezufuhr durch Wärme oder Licht

Um überhaupt in Gang zu kommen, verbrauchen die meisten chemischen Reaktionen zunächst Energie. Häufig erhalten sie diese als Wärme, z. B. indem ein Bunsenbrenner die Temperatur eines Reaktionsgefäßes erhöht. Eine andere Energiequelle kann das Licht sein, das so genannte Photoreaktionen auslöst. Beispiele für verschachtelte Reaktionen, bei denen eine Photoreaktion am Anfang steht, sind die Photosynthese (Umwandlung von Lichtenergie in organismisch verwertbare Energieformen) und der Sehprozess (Umwandlung von Lichtenergie in Neurosignale). "Viele dieser lichtgetriebenen Reaktionen sind thermisch unmöglich oder führen bei identischen Ausgangssubstanzen zu anderen Produkten als die thermische Analogreaktion", erläutert Prof. Marx.

Komplizierte Photoreaktionen simulieren

Thermische Reaktionen laufen typischerweise in einem einzigen elektronischen Zustand - meist dem Grundzustand - ab. Solche Reaktionen können die Forscher bereits seit gut 15 Jahren "in silico", also im Computer, simulieren. "Wir vereinfachen die Grundgleichungen der Quantenphysik, münzen sie in Rechenvorschriften um und lösen sie näherungsweise auf Großrechnern", so Marx. Eine effiziente Methode dazu ist die 1985 eingeführte "Car-Parrinello Molekulardynamik" (CP-MD). Photoreaktionen sind komplizierter, da sie mindestens zwei elektronische Zustände benötigen, die zudem (über sog. "nichtadiabatische Kopplungen") miteinander verquickt sind. Mit einem neuen Algorithmus gelang es Doltsimis und Marx nun, das CP-MD-Verfahren auf Photoreaktionen zu erweitern (nichtadiabatische CP-MD). Ihre Methode kann, im Gegensatz zu ähnlichen Ansätzen, Photoreaktionen sehr effizient und auch für komplexe Moleküle berechnen.

Große und gelöste Moleküle untersuchen

Um mit anderen Rechnungen vergleichen zu können, testeten die Forscher ihre Methode zunächst an einer bekannten Photoreaktion eines kleinen Moleküls in der Gasphase. Ideale Anwendungsgebiete der nichtadiabatischen CP-MD sind jedoch gerade die Untersuchung großer Moleküle, etwa DNA Basenpaare, oder von Molekülen in Lösung. Sie kommen in Reaktionskolben chemischer Labors und in biologischen Organismen am häufigsten vor.

Titelaufnahme

Nikos L. Doltsinis; Dominik Marx: Nonadiabatic Car-Parrinello Molecular Dynamics. In: Physical Review Letters, Band 88, Nr. 16, Seite 166402, 2002 

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail:  dominik.marx@theochem.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.ruhr-uni-bochum.de/go/surfhop.html

Weitere Berichte zu: CP-MD Molekül Photoreaktion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie