Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatz zu Verständnis und Therapie der Schlafkrankheit

02.11.2007
Parasiten schwimmen um ihr Leben

Wissenschaftler der TU Darmstadt um Prof. Dr. Markus Engstler vom Institut für Mikrobiologie und Genetik haben in Kooperation mit dem Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen Forschungsergebnisse erzielt, die es ermöglichen könnten, mittelfristig die Schlafkrankheit zu heilen. Die Ergebnisse werden heute, 2. November 2007, in dem renommierten internationalen Fachmagazin "Cell" veröffentlicht.


Trypanosoma brucei, der im Blut lebende Erreger der Schlafkrankheit. Markus Engstler / TU Darmstadt


Bisher verläuft die von den Einzeller ausgelöste Schlafkrankheit unbehandelt stets tödlich. Markus Engstler / TU Darmstadt

Der Schlafkrankheit fallen in den Tropen nach wie vor jährlich Tausende Menschen zum Opfer und gehört heute zu den gefährlichsten "vergessenen Krankheiten". Über 60 Millionen Afrikaner südlich der Sahara leben in akuter Gefahr, durch den Biss der Tsetse-Fliege mit dem Erreger, dem Einzeller Trypanosoma brucei, infiziert zu werden.

Bis heute war unklar, wie die Trypanosomen angesichts der ständig steigenden Mengen von Antikörpern im Blut des Menschen überleben können. Das Biologenteam unter Leitung von Prof. Engstler konnte nun zeigen, dass Antikörper, die an der Oberfläche der Erreger andocken, mit großer Geschwindigkeit zum hinteren Ende der spindelförmigen Parasiten transportiert werden, wo sie rasch von den Zellen aufgenommen und verdaut werden: Der Einzeller frisst die für ihn tödlichen Antikörper.

Wie aber funktioniert dieser Transport? Die Hypothese, die von Markus Engstler und Peter Overath von der Universität Tübingen entwickelt wurde, ist ebenso einfach wie provokant: Trypanosomen schwimmen ohne Unterlass und stets in eine Richtung. Die Bewegung der Zellen erzeugt eine Strömung, die über die sehr glatte Oberfläche der Einzeller streicht. Binden dort Antikörper, dann bieten sie der Strömung Widerstand und werden vom "Fahrtwind" nach hinten getrieben: exakt in Richtung Zellmund, wo sie gefressen werden und keine Meldung mehr an das Immunsystem machen können. Antikörper auf der Zelloberfläche von Trypanosomen funktionieren also gewissermaßen wie "molekulare Segel".

Das Darmstädter Biologenteam um Markus Engstler prüfte diese "Segel-Hypothese" durch eine Vielzahl von Experimenten, deren Grundlagen er am Institut für Mikrobiologie und Genetik der LMU München legte, wo er bis Anfang 2006 geforscht hatte. Einen wichtigen Beitrag lieferte auch Geert Wiegertjes vom Wageningen Institute for Animal Sciences (Niederlande) der sehr große Antikörper gegen Trypanosomen herstellte. Die Experimente bestätigten die These: Je größer die Antikörper sind, desto ausgeprägter ist der Effekt.

Kann aber dieser Fahrtwind-Effekt bei Objekten von der Größe eines Moleküls wirklich funktionieren? Ist diese an der Alltagswelt geschulte Anschauung auf der molekularen Skala überhaupt gültig? Thomas Pfohl und Stephan Herminghaus vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben diese Frage mathematisch betrachtet, im Computer simuliert und mit einem überraschend deutlichen "Ja!" beantwortet.

Der experimentelle Beweis gelang wiederum in der Gruppe von Markus Engstler. Mithilfe der sogenannten "RNA-Interferenz", eines genetischen Tricks, für den es erst im letzten Jahr den Nobelpreis für Medizin gab, wurde den Trypanosomen beigebracht, den Rückwärtsgang einzuschalten. Das Resultat war so einfach wie überzeugend: Statt nach hinten zum "Maul" der Zelle zu wandern, schwammen die Antikörper jetzt zur Vorderseite der Zelle, genau wie es bei der Segel-Hypothese zu erwarten war.

Es scheint nun klar, warum Trypanosomen niemals aufhören (vorwärts) zu schwimmen, auch wenn sie im viel schneller strömende Blut des Menschen kaum vorankommen: Sie schwimmen um ihr Leben. Aus dieser Erkenntnis ergeben sich unmittelbar neue Therapieansätze: Wenn die Trypanosomen am Schwimmen gehindert werden könnten, wären sie dem Immunsystem hilflos ausgeliefert. Genau hier greifen die neuesten Experimente der Darmstädter Genetiker an, die auch in Zusammenarbeit mit Forschern in Kenia durchgeführt werden sollen.

Hintergrund

Die Hypothese, dass hydrodynamische Kräfte tatsächlich Moleküle in biologischen Membranen bewegen können, erschien den Forschern zunächst sehr unwahrscheinlich und war zuvor auch noch nie postuliert worden. Grund dafür sind die besonderen physikalischen Bedingungen an Grenzflächen im molekularen Maßstab. Hier sollte nach allgemeiner Auffassung der Fachwissenschaftler "hydrodynamische Flaute" herrschen.

Die Hypothese hat weit reichende Konsequenzen, denn Strömungen umgeben nahezu alle Zellen. Bewegen sich etwa auch auf der Oberfläche der sogenannten Epithelzellen, die das Blutgefäßsystem auskleiden, große Proteine im Strom des Blutes? Können so Informationen zum Beispiel über die Strömungsgeschwindigkeit des Blutes empfangen und weitergeleitet werden?

Als Markus Engstler die Ergebnisse der Forschungsarbeiten und die "Molecular Sail Hypothesis" bei dem renommierten Journal "Cell" zur Publikation einreichte, waren die Gutachter geteilter Meinung: einerseits euphorisch, andererseits ungläubig. Die Herausgeber forderten weitere Beweise. Engstler entwarf dazu die RNA-Interferenz-Experimente, die im Frühsommer 2007 vom Darmstädter Doktoranden Niko Heddergott durchgeführt wurden.

Dass die Tsetse-Fliege den Erreger überträgt, entdeckte vor etwa 110 Jahren der englische Stabsarzt Sir David Bruce. In den folgenden Jahrzehnten wurde eine Vielzahl hochkarätig besetzter Expeditionen nach Afrika entsandt, deren Ziel es war, die Seuche und ihre Ursachen zu erforschen. Die deutschen Expeditionen wurden von Robert Koch angeführt. Auch Paul Ehrlich und andere prominente Mikrobiologen versuchten den Trypanosomen ihr Geheimnis zu entlocken, allerdings vergeblich. Albert Schweitzer baute sein berühmtes Dschungel-Hospital 'Lambarene', um die furchtbaren Symptome der Erkrankung vor Ort zu lindern.

In den letzten 20 Jahren hatte die Forschung gezeigt, dass bei dem Erreger der Schlafkrankheit die gesamte Zelloberfläche von einem dichten Mantel aus zehn Millionen Kopien einer einzigen Art von Proteinen bedeckt ist. Das Immunsystem des Wirts bildet Antikörper gegen diese "variant surface glycoprotein" (VSG) genannten Proteine und zerstört so fast alle Trypanosomen. Einige Parasiten aber überleben, indem sie einen neuen Mantel aus einem strukturell sehr ähnlichen, für das Immunsystem aber noch unbekannten Protein bilden.

Diese Zellen vermehren sich und erzeugen so eine neue parasitäre Welle, bevor sie wiederum vom Immunsystem eliminiert werden. Aus Sicht der Trypanosomen kann dieses "Spiel" fast unbegrenzt fortgesetzt werden, denn die Zellen können aus einem Repertoire von etwa tausend unterschiedlichen VSG-Genen wählen. Für den infizierten Menschen aber endet die Infektion nach kurzer Zeit tödlich.

Heute, ein Jahrhundert nach der Entdeckung des Übertragungsweges, ist die Schlafkrankheit noch immer eine Seuche der Ärmsten. Migration und Vertreibung sorgen dafür, dass die Erkrankung ständig an neuen Orten und unvorhersehbar aufflackert. Die Infektion ist sehr schwer zu diagnostizieren und verläuft unbehandelt in jedem Fall tödlich - im Gegensatz zu Malaria oder Tuberkulose.

Die wenigen, verfügbaren Medikamente stammen zum Teil noch aus Kolonialzeiten und sind extrem toxisch. Einen Impfstoff wird es aufgrund der antigenen Variabilität der Parasiten möglicherweise niemals geben. Seit Jahren führen die "Ärzte ohne Grenzen" einen noch immer zu einsamen Feldzug für den Zugang zu besseren Medikamenten.

Originalpublikation:
M. Engstler, T. Pfohl, S. Herminghaus, M. Boshart, G. Wiegertjes, N. Heddergott, P. Overath, Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes, Cell 131, Nr 3, 505-515 (2. November 2007).
Pressekontakt:
Wolf Hertlein, Referat Kommunikation, TU Darmstadt,
Tel. +49 6151 16 - 3229, hertlein@pvw.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.pvw.tu-darmstadt.de

Weitere Berichte zu: Antikörper Immunsystem Protein Schlafkrankheit Trypanosomen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie